Learn R Programming

VDA (version 1.3)

plot.cv.vda.r: Plot a cv.vda.r object

Description

Plot a the cross validation error across lambda values

Usage

"plot"(x, ...)

Arguments

x
Object of class 'cv.vda.r', the result of a call to cv.vda.r.
...
Not used.

Details

Plots the k-fold cross validation testing error for values across a different lambda values. Use cv.vda.r to produce the object of class "cv.vda.r."

References

Lange, K. and Wu, T.T. (2008) An MM Algorithm for Multicategory Vertex Discriminant Analysis. Journal of Computational and Graphical Statistics, Volume 17, No 3, 527-544.

See Also

vda.r, cv.vda.r

Examples

Run this code
# load data
data(zoo)

# feature matrix without intercept
x <- zoo[,2:17]

# class vector
y <- zoo[,18]

# lambda vector
lam.vec <- (1:10)/10

# run 10 fold cross validation across lambdas
cv <- cv.vda.r(x, y, 10, lam.vec)

# plot CV results
plot(cv)

# Perform VDA with CV-selected optimal lambda
out <- vda.r(x,y,cv$lam.opt)

# Predict five cases based on VDA
fivecases <- matrix(0,5,16)
fivecases[1,] <- c(1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0)
fivecases[2,] <- c(1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1)
fivecases[3,] <- c(0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0)
fivecases[4,] <- c(0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0)
fivecases[5,] <- c(0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0)
predict(out, fivecases)

Run the code above in your browser using DataLab