sinmad(link.a = "loge", link.scale = "loge", link.q = "loge",
earg.a=list(), earg.scale=list(), earg.q=list(),
init.a = NULL, init.scale = NULL, init.q = 1, zero = NULL)
a
, scale
, and q
.
See Links
for more choices.earg
in Links
for general information.a
, scale
, and q
.a
, scale
, q
, respectively."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.Some distributions which are special cases of the 3-parameter Singh-Maddala are the Lomax ($a=1$), Fisk ($q=1$), and paralogistic ($a=q$).
The Singh-Maddala distribution has density
$$f(y) = aq y^{a-1} / [b^a {1 + (y/b)^a}^{1+q}]$$
for $a > 0$, $b > 0$, $q > 0$, $y > 0$.
Here, $b$ is the scale parameter scale
,
and the others are shape parameters.
The cumulative distribution function is
$$F(y) = 1 - [1 + (y/b)^a]^{-q}.$$
The mean is
$$E(Y) = b \, \Gamma(1 + 1/a) \, \Gamma(q - 1/a) / \Gamma(q)$$
provided $-a < 1 < aq$.
Sinmad
,
genbetaII
,
betaII
,
dagum
,
fisk
,
invlomax
,
lomax
,
paralogistic
,
invparalogistic
.y = rsinmad(n=3000, 3, 5, 2)
fit = vglm(y ~ 1, sinmad, trace=TRUE)
fit = vglm(y ~ 1, sinmad, trace=TRUE, crit="c")
coef(fit, mat=TRUE)
Coef(fit)
summary(fit)
Run the code above in your browser using DataLab