binomialff(link = "logit", earg = list(),
dispersion = 1, mv = FALSE, onedpar = !mv,
parallel = FALSE, zero = NULL)
Links
for more choices.Links
for more information.dispersion = 0
to have it estimated, or else specify a known
positive value (or values if mv
TRUE
, then the response is interpreted
as $M$ independent binary responses, where $M$ is the number
of columns of the response matrix. In this case, the response matrix
should have zero/one values only.If <
mv
, then a separate dispersion
parameter will be computed for each response (column), by default.
Setting onedpar=TRUE
will pool them so that there is only one
dispersion parameter to be estimatmv
is TRUE
. This
argument allows for the parallelism assumption whereby the regression
coefficients for a variable is constrained to be equal over the $M$
linear/additive predictors. The maximum likelihood estimate will not exist if the data is
completely separable or quasi-completely separable.
See Chapter 10 of Altman et al. (2004) for more details.
Yet to do: add a sepcheck=TRUE
, say, argument to detect this
problem and give an appropriate warning.
A dispersion parameter that is less/greater than unity corresponds to under-/over-dispersion relative to the binomial model. Over-dispersion is more common in practice.
Setting mv=TRUE
is necessary when fitting a Quadratic RR-VGLM
(see cqo
) because the response is a matrix of $M$
columns (e.g., one column per species). Then there will be $M$
dispersion parameters (one per column of the response matrix).
When used with cqo
and cao
, it may be
preferable to use the cloglog
link.
Altman, M. and Gill, J. and McDonald, M. P. (2004) Numerical Issues in Statistical Computing for the Social Scientist, Hoboken, NJ: Wiley-Interscience.
quasibinomialff
,
Links
,
rrvglm
,
cqo
,
cao
,
betabinomial
,
zibinomial
,
dexpbinomial
,
mbinomial
,
seq2binomial
,
amlbinomial
,
binomial
.quasibinomialff()
quasibinomialff(link="probit")
fit = vgam(agaaus ~ poly(altitude, 2), binomialff(link=cloglog), hunua)
with(hunua, plot(altitude, agaaus, col="blue", ylab="P(agaaus=1)",
main="Presence/absence of Agathis australis", las=1))
o = with(hunua, order(altitude))
with(hunua, lines(altitude[o], fitted(fit)[o], col="red", lwd=2))
Run the code above in your browser using DataLab