# Example 1; proportional odds model
pneumo = transform(pneumo, let = log(exposure.time))
(fit = vglm(cbind(normal, mild, severe) ~ let, propodds, pneumo))
fit@y # Sample proportions
weights(fit, type = "prior") # Number of observations
coef(fit, matrix = TRUE) # p.179, in McCullagh and Nelder (1989)
constraints(fit) # Constraint matrices
# Example 2; zero-inflated Poisson model
zipdat = data.frame(x = runif(nn <- 2000))
zipdat = transform(zipdat, phi = logit(-0.5 + 1*x, inverse=TRUE),
lambda = loge( 0.5 + 2*x, inverse=TRUE))
zipdat = transform(zipdat, y = rzipois(nn, lambda, phi))
with(zipdat, table(y))
fit = vglm(y ~ x, zipoisson, zipdat, trace=TRUE)
coef(fit, matrix=TRUE) # These should agree with the above values
# Example 3; fit a two species GAM simultaneously
fit2 = vgam(cbind(agaaus, kniexc) ~ s(altitude, df = c(2,3)),
binomialff(mv = TRUE), hunua)
coef(fit2, mat=TRUE) # Not really interpretable
plot(fit2, se = TRUE, overlay = TRUE, lcol = 1:2, scol = 1:2)
ooo = with(hunua, order(altitude))
with(hunua, matplot(altitude[ooo], fitted(fit2)[ooo,], type = "l", lwd = 2,
xlab = "Altitude (m)", ylab = "Probability of presence", las = 1,
main = "Two plant species' response curves", ylim = c(0,.8)))
with(hunua, rug(altitude))
# Example 4; LMS quantile regression
fit = vgam(BMI ~ s(age, df=c(4,2)), lms.bcn(zero=1), dat=bminz, trac=TRUE)
head(predict(fit))
head(fitted(fit))
head(bminz) # Person 1 is near the lower quartile among people his age
head(cdf(fit))
par(mfrow=c(1,1), bty="l", mar=c(5,4,4,3)+0.1, xpd=TRUE)
qtplot(fit, percentiles=c(5,50,90,99), main="Quantiles",
xlim=c(15,90), las=1, ylab="BMI", lwd=2, lcol=4) # Quantile plot
ygrid = seq(15, 43, len=100) # BMI ranges
par(mfrow=c(1,1), lwd=2) # Density plot
aa = deplot(fit, x0=20, y=ygrid, xlab="BMI", col="black",
main="Density functions at Age = 20 (black), 42 (red) and 55 (blue)")
aa
aa = deplot(fit, x0=42, y=ygrid, add=TRUE, llty=2, col="red")
aa = deplot(fit, x0=55, y=ygrid, add=TRUE, llty=4, col="blue", Attach=TRUE)
aa@post$deplot # Contains density function values
# Example 5; GEV distribution for extremes
(fit = vglm(maxtemp ~ 1, egev, data=oxtemp, trace=TRUE))
head(fitted(fit))
coef(fit, mat = TRUE)
Coef(fit)
vcov(fit)
vcov(fit, untransform = TRUE)
sqrt(diag(vcov(fit))) # Approximate standard errors
rlplot(fit)
Run the code above in your browser using DataLab