
fsqrt(theta, earg = list(min=0, max=1, mux=sqrt(2)),
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)
min
, max
and mux
.
These are called $L$, $U$ and $K$ below.TRUE
the inverse function is computed.blurb
slot of a
vglmff-class
object.initialize
slot of a vglmff-class
object.
Contains a little more information if TRUE
.fsqrt
with deriv = 0
:
$K (\sqrt{\theta-L} - \sqrt{U-\theta})$
or
mux * (sqrt(theta-min) - sqrt(max-theta))
when inverse = FALSE
,
and if inverse = TRUE
then some more
complicated function that returns a NA
unless
theta
is between -mux*sqrt(max-min)
and
mux*sqrt(max-min)
. For deriv = 1
, then the function returns
d theta
/ d eta
as a function of theta
if inverse = FALSE
,
else if inverse = TRUE
then it returns the reciprocal.
theta
out of range result in NA
or NaN
. The arguments short
and tag
are used only if
theta
is character.
Links
.p = seq(0.01, 0.99, by=0.01)
fsqrt(p)
max(abs(fsqrt(fsqrt(p), inverse=TRUE) - p)) # Should be 0
p = c(seq(-0.02, 0.02, by=0.01), seq(0.97, 1.02, by=0.01))
fsqrt(p) # Has NAs
p = seq(0.01, 0.99, by=0.01)
par(mfrow=c(2,2))
y = seq(-4, 4, length=100)
for(d in 0:1) {
matplot(p, cbind(logit(p, deriv=d), fsqrt(p, deriv=d)),
type="n", col="purple", ylab="transformation",
lwd=2, las=1,
main = if (d == 0) "Some probability link functions"
else "First derivative")
lines(p, logit(p, deriv=d), col="limegreen", lwd=2)
lines(p, probit(p, deriv=d), col="purple", lwd=2)
lines(p, cloglog(p, deriv=d), col="chocolate", lwd=2)
lines(p, fsqrt(p, deriv=d), col="tan", lwd=2)
if (d == 0) {
abline(v=0.5, h=0, lty="dashed")
legend(0, 4.5, c("logit", "probit", "cloglog", "fsqrt"),
col=c("limegreen","purple","chocolate", "tan"), lwd=2)
} else
abline(v=0.5, lty="dashed")
}
for(d in 0) {
matplot(y, cbind(logit(y, deriv=d, inverse=TRUE),
fsqrt(y, deriv=d, inverse=TRUE)),
type="n", col="purple", xlab="transformation", ylab="p",
lwd=2, las=1,
main = if (d == 0) "Some inverse probability link functions"
else "First derivative")
lines(y, logit(y, deriv=d, inverse=TRUE), col="limegreen", lwd=2)
lines(y, probit(y, deriv=d, inverse=TRUE), col="purple", lwd=2)
lines(y, cloglog(y, deriv=d, inverse=TRUE), col="chocolate", lwd=2)
lines(y, fsqrt(y, deriv=d, inverse=TRUE), col="tan", lwd=2)
if (d == 0) {
abline(h=0.5, v=0, lty="dashed")
legend(-4, 1, c("logit", "probit", "cloglog", "fsqrt"),
col=c("limegreen","purple","chocolate", "tan"), lwd=2)
}
}
# This is lucky to converge
earg = list(min=0, max=1, mux=5)
fit.h = vglm(agaaus ~ bs(altitude),
fam= binomialff(link="fsqrt", earg=earg),
data=hunua, trace=TRUE, crit="d")
plotvgam(fit.h, se=TRUE, lcol="red", scol="red",
main="Red is Hunua, Blue is Waitakere")
head(predict(fit.h, hunua, type="response"))
# The following fails.
pneumo = transform(pneumo, let=log(exposure.time))
earg = list(min=0, max=1, mux=10)
fit = vglm(cbind(normal, mild, severe) ~ let,
cumulative(link="fsqrt", earg=earg, par=TRUE, rev=TRUE),
data = pneumo, trace=TRUE, maxit=200)
Run the code above in your browser using DataLab