Learn R Programming

VGAM (version 0.8-1)

fsqrt: Folded Square Root Link Function

Description

Computes the folded square root transformation, including its inverse and the first two derivatives.

Usage

fsqrt(theta, earg = list(min=0, max=1, mux=sqrt(2)),
      inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta
Numeric or character. See below for further details.
earg
List with components min, max and mux. These are called $L$, $U$ and $K$ below.
inverse
Logical. If TRUE the inverse function is computed.
deriv
Order of the derivative. Integer with value 0, 1 or 2.
short
Used for labelling the blurb slot of a vglmff-class object.
tag
Used for labelling the linear/additive predictor in the initialize slot of a vglmff-class object. Contains a little more information if TRUE.

Value

  • For fsqrt with deriv = 0: $K (\sqrt{\theta-L} - \sqrt{U-\theta})$ or mux * (sqrt(theta-min) - sqrt(max-theta)) when inverse = FALSE, and if inverse = TRUE then some more complicated function that returns a NA unless theta is between -mux*sqrt(max-min) and mux*sqrt(max-min).

    For deriv = 1, then the function returns d theta / d eta as a function of theta if inverse = FALSE, else if inverse = TRUE then it returns the reciprocal.

Details

The folded square root link function can be applied to parameters that lie between $L$ and $U$ inclusive. Numerical values of theta out of range result in NA or NaN.

The arguments short and tag are used only if theta is character.

See Also

Links.

Examples

Run this code
p = seq(0.01, 0.99, by=0.01)
fsqrt(p)
max(abs(fsqrt(fsqrt(p), inverse=TRUE) - p)) # Should be 0

p = c(seq(-0.02, 0.02, by=0.01), seq(0.97, 1.02, by=0.01))
fsqrt(p)  # Has NAs

p = seq(0.01, 0.99, by=0.01)
par(mfrow=c(2,2))
y = seq(-4, 4, length=100)
for(d in 0:1) {
    matplot(p, cbind(logit(p, deriv=d), fsqrt(p, deriv=d)),
            type="n", col="purple", ylab="transformation",
            lwd=2, las=1,
            main = if (d == 0) "Some probability link functions"
            else "First derivative")
    lines(p, logit(p, deriv=d), col="limegreen", lwd=2)
    lines(p, probit(p, deriv=d), col="purple", lwd=2)
    lines(p, cloglog(p, deriv=d), col="chocolate", lwd=2)
    lines(p, fsqrt(p, deriv=d), col="tan", lwd=2)
    if (d == 0) {
        abline(v=0.5, h=0, lty="dashed")
        legend(0, 4.5, c("logit", "probit", "cloglog", "fsqrt"),
               col=c("limegreen","purple","chocolate", "tan"), lwd=2)
    } else
        abline(v=0.5, lty="dashed")
}

for(d in 0) {
    matplot(y, cbind(logit(y, deriv=d, inverse=TRUE),
                     fsqrt(y, deriv=d, inverse=TRUE)),
            type="n", col="purple", xlab="transformation", ylab="p",
            lwd=2, las=1,
            main = if (d == 0) "Some inverse probability link functions"
            else "First derivative")
    lines(y, logit(y, deriv=d, inverse=TRUE), col="limegreen", lwd=2)
    lines(y, probit(y, deriv=d, inverse=TRUE), col="purple", lwd=2)
    lines(y, cloglog(y, deriv=d, inverse=TRUE), col="chocolate", lwd=2)
    lines(y, fsqrt(y, deriv=d, inverse=TRUE), col="tan", lwd=2)
    if (d == 0) {
        abline(h=0.5, v=0, lty="dashed")
        legend(-4, 1, c("logit", "probit", "cloglog", "fsqrt"),
               col=c("limegreen","purple","chocolate", "tan"), lwd=2)
    }
}

# This is lucky to converge
earg = list(min=0, max=1, mux=5)
fit.h = vglm(agaaus ~ bs(altitude),
             fam= binomialff(link="fsqrt", earg=earg),
             data=hunua, trace=TRUE, crit="d")
plotvgam(fit.h, se=TRUE, lcol="red", scol="red",
         main="Red is Hunua, Blue is Waitakere")
head(predict(fit.h, hunua, type="response"))


# The following fails.
pneumo = transform(pneumo, let=log(exposure.time))
earg = list(min=0, max=1, mux=10)
fit = vglm(cbind(normal, mild, severe) ~ let,
           cumulative(link="fsqrt", earg=earg, par=TRUE, rev=TRUE),
           data = pneumo, trace=TRUE, maxit=200)

Run the code above in your browser using DataLab