
lgammaff(link = "loge", earg = list(), init.k = NULL)
lgamma3ff(llocation = "identity", lscale = "loge", lshape = "loge",
elocation = list(), escale = list(), eshape = list(),
ilocation = NULL, iscale = NULL, ishape = 1, zero = NULL)
Links
for more choices.Links
for more choices.earg
in Links
for general information.
"vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.digamma(k)
(returned as
the fitted values) and its variance is trigamma(k)
.
For the non-standard log-gamma distribution, one replaces $y$
by $(y-a)/b$, where $a$ is the location parameter
and $b$ is the positive scale parameter.
Then the density function is
a + b*digamma(k)
(returned as
the fitted values) and b^2 * trigamma(k)
, respectively.
Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, 2nd edition, Volume 2, p.89, New York: Wiley.
rlgamma
,
gengamma
,
prentice74
,
gamma1
,
lgamma
.ldat = data.frame(y = rlgamma(100, k = exp(1)))
fit = vglm(y ~ 1, lgammaff, ldat, trace = TRUE, crit = "coef")
summary(fit)
coef(fit, matrix = TRUE)
Coef(fit)
ldat = data.frame(x = runif(nn <- 5000)) # Another example
ldat = transform(ldat, loc = -1 + 2*x, Scale = exp(1))
ldat = transform(ldat, y = rlgamma(nn, loc, scale = Scale, k = exp(0)))
fit = vglm(y ~ x, lgamma3ff(zero = 2:3), ldat, trace = TRUE, crit = "c")
coef(fit, matrix = TRUE)
Run the code above in your browser using DataLab