
pareto1(lshape = "loge", earg=list(), location=NULL)
tpareto1(lower, upper, lshape = "loge", earg=list(), ishape=NULL,
method.init=1)
Links
for more choices.
A log link is the default because $k$ is positive.earg
in Links
for general information.NULL
means a value is obtained internally.
If failure to converge occurs try specifying a value, e.g., 1 or 2.min(y)
where y
is the response
v1
or 2
which
specifies the initialization method. If failure to converge occurs
try the other value, or else specify a value for ishape
."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.pareto1
estimates only $k$ using iteratively
reweighted least squares. The MLE of the $\alpha$
parameter lies on the boundary and is min(y)
where y
is the response. Consequently, using the default argument values,
the standard errors are incorrect when one does a summary
on the fitted object. If the user inputs a value for alpha
then it is assumed known with this value and then summary
on
the fitted object should be correct. Numerical problems may occur
for small $k$, e.g., $k < 1$.
The Pareto distribution, which is used a lot in economics,
has a probability density function that can be written
The upper truncated Pareto distribution
has a probability density function that can be written
Aban, I. B., Meerschaert, M. M. and Panorska, A. K. (2006) Parameter estimation for the truncated Pareto distribution, Journal of the American Statistical Association, 101(473), 270--277.
Pareto
,
Tpareto
,
paretoIV
,
gpd
.alpha = 2; k = exp(3)
pdat = data.frame(y = rpareto(n=1000, location=alpha, shape=k))
fit = vglm(y ~ 1, pareto1, pdat, trace=TRUE)
fit@extra # The estimate of alpha is here
head(fitted(fit))
with(pdat, mean(y))
coef(fit, matrix=TRUE)
summary(fit) # Standard errors are incorrect!!
# Here, alpha is assumed known
fit2 = vglm(y ~ 1, pareto1(location=alpha), pdat, trace=TRUE, crit="c")
fit2@extra # alpha stored here
head(fitted(fit2))
coef(fit2, matrix=TRUE)
summary(fit2) # Standard errors are ok
# Upper truncated Pareto distribution
lower = 2; upper = 8; k = exp(2)
pdat3 = data.frame(y = rtpareto(n=100, lower=lower, upper=upper, shape=k))
fit3 = vglm(y ~ 1, tpareto1(lower, upper), pdat3, trace=TRUE, cri="c")
coef(fit3, matrix=TRUE)
c(fit3@misc$lower, fit3@misc$upper)
Run the code above in your browser using DataLab