hspider[,1:6] = scale(hspider[,1:6]) # Good idea when ITolerances = TRUE
set.seed(111)
r1 = cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,
Auloalbi, Pardmont, Pardnigr, Pardpull, Trocterr) ~
WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
poissonff, hspider, trace = FALSE, ITolerances = TRUE)
set.seed(111) # r2 below is an ill-conditioned model
r2 = cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,
Auloalbi, Pardmont, Pardnigr, Pardpull, Trocterr) ~
WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
isdlv = c(2.4,1.0), Muxfactor = 3.0, trace = FALSE,
poissonff, hspider, Rank = 2, EqualTolerances = TRUE)
sort(r1@misc$deviance.Bestof) # A history of the fits
sort(r2@misc$deviance.Bestof) # A history of the fits
if (deviance(r2) > 857) stop("suboptimal fit obtained")
persp(r1, xlim=c(-6,5), col=1:4, label=TRUE)
# Involves all species
persp(r2, xlim=c(-6,5), ylim=c(-4,5), theta=10, phi=20, zlim=c(0,220))
# Omit the two dominant species to see what's behind them
persp(r2, xlim=c(-6,5), ylim=c(-4,5), theta=10, phi=20, zlim=c(0,220),
which=(1:10)[-c(8,10)]) # Use zlim to retain the original z-scale
Run the code above in your browser using DataLab