# Example: binomial data with lots of trials per observation
set.seed(1234)
sizevec = rep(100, length=(nn <- 200))
mydat = data.frame(x = sort(runif(nn)))
mydat = transform(mydat, prob = logit(-0+2.5*x+x^2, inverse = TRUE))
mydat = transform(mydat, y = rbinom(nn, size = sizevec, prob = prob))
(fit = vgam(cbind(y, sizevec - y) ~ s(x, df = 3),
amlbinomial(w = c(0.01, 0.2, 1, 5, 60)),
mydat, trace = TRUE))
fit@extra
par(mfrow=c(1,2))
# Quantile plot
with(mydat, plot(x, jitter(y), col="blue", las=1, main=
paste(paste(round(fit@extra$percentile, dig=1), collapse=", "),
"percentile-expectile curves")))
with(mydat, matlines(x, 100 * fitted(fit), lwd=2, col="blue", lty=1))
# Compare the fitted expectiles with the quantiles
with(mydat, plot(x, jitter(y), col="blue", las=1, main=
paste(paste(round(fit@extra$percentile, dig=1), collapse=", "),
"percentile curves are red")))
with(mydat, matlines(x, 100 * fitted(fit), lwd=2, col="blue", lty=1))
for(ii in fit@extra$percentile)
with(mydat, matlines(x, 100 *
qbinom(p=ii/100, size=sizevec, prob=prob) / sizevec,
col="red", lwd=2, lty=1))
Run the code above in your browser using DataLab