Last chance! 50% off unlimited learning
Sale ends in
data(hspider)
This data set has been often used to illustrate ordination, e.g., using
canonical correspondence analysis (CCA). In the example below, the
data is used for constrained quadratic ordination (CQO; formerly called
canonical Gaussian ordination or CGO), a numerically intensive method
that has many superior qualities. See cqo
for details.
str(hspider)
# Fit a rank-1 Poisson CQO
set.seed(111) # This leads to the global solution
hspider[,1:6]=scale(hspider[,1:6]) # Standardize the environmental variables
# vvv p1 = cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi, Auloalbi,
# vvv Pardlugu, Pardmont, Pardnigr, Pardpull, Trocterr, Zoraspin) ~
# vvv WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
# vvv fam = poissonff, data = hspider, Crow1posit=FALSE)
# vvv nos = ncol(p1@y)
# vvv lvplot(p1, y=TRUE, lcol=1:nos, pch=1:nos, pcol=1:nos)
# vvv Coef(p1)
# vvv summary(p1)
# Fit a rank-1 binomial CAO
hsbin = hspider # Binary species data
hsbin[,-(1:6)] = as.numeric(hsbin[,-(1:6)] > 0)
set.seed(123)
ahsb1 = cao(cbind(Alopcune,Arctlute,Auloalbi,Zoraspin) ~
WaterCon + ReflLux, family = binomialff(mv=TRUE),
df1.nl = 2.2, Bestof=3, data = hsbin)
par(mfrow=2:1, las=1)
lvplot(ahsb1, type="predictors", llwd=2, ylab="logit p", lcol=1:9)
persp(ahsb1, rug=TRUE, col=1:10, lwd=2)
coef(ahsb1)
Run the code above in your browser using DataLab