Last chance! 50% off unlimited learning
Sale ends in
plotqrrvglm(object,
rtype = c("pearson", "response", "deviance", "working"),
ask = FALSE,
main = paste(Rtype, "residuals vs latent variable(s)"),
xlab = "Latent Variable",
ITolerances = object@control$EqualTolerances, ...)
"qrrvglm"
.TRUE
, the user is asked to hit the return
key for the next plot.Coef(object, ITolerances=ITolerances)
.par
).lvplot.qrrvglm
,
cqo
.# QRR-VGLM on the hunting spiders data
# This is computationally expensive
set.seed(111) # This leads to the global solution
# hspider[,1:6]=scale(hspider[,1:6]) # Standardize the environmental variables
p1 = cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,
Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,
Trocterr, Zoraspin) ~
WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
fam = quasipoissonff, data = hspider, Crow1positive=FALSE)
par(mfrow=c(3,4))
plot(p1, rtype="d", col="blue", pch=4, las=1)
Run the code above in your browser using DataLab