Learn R Programming

VGAM (version 0.8-2)

quasibinomialff: Quasi-Binomial Family Function

Description

Family function for fitting generalized linear models to binomial responses, where the dispersion parameters are unknown.

Usage

quasibinomialff(link = "logit", mv = FALSE, onedpar = !mv,
                parallel = FALSE, zero = NULL)

Arguments

link
Link function. See Links for more choices.
mv
Multivariate response? If TRUE, then the response is interpreted as $M$ binary responses, where $M$ is the number of columns of the response matrix. In this case, the response matrix should have zero/one values only.

If FALS

onedpar
One dispersion parameter? If mv, then a separate dispersion parameter will be computed for each response (column), by default. Setting onedpar=TRUE will pool them so that there is only one dispersion parameter to be estimat
parallel
A logical or formula. Used only if mv is TRUE. This argument allows for the parallelism assumption whereby the regression coefficients for a variable is constrained to be equal over the $M$ linear/additive predictors.
zero
An integer-valued vector specifying which linear/additive predictors are modelled as intercepts only. The values must be from the set {1,2,...,$M$}, where $M$ is the number of columns of the matrix response.

Value

Details

The final model is not fully estimated by maximum likelihood since the dispersion parameter is unknown (see pp.124--8 of McCullagh and Nelder (1989) for more details).

A dispersion parameter that is less/greater than unity corresponds to under-/over-dispersion relative to the binomial model. Over-dispersion is more common in practice.

Setting mv=TRUE is necessary when fitting a Quadratic RR-VGLM (see cqo) because the response will be a matrix of $M$ columns (e.g., one column per species). Then there will be $M$ dispersion parameters (one per column of the response).

References

McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd ed. London: Chapman & Hall.

See Also

binomialff, rrvglm, cqo, cao, logit, probit, cloglog, cauchit, poissonff, quasipoissonff, quasibinomial.

Examples

Run this code
quasibinomialff()
quasibinomialff(link="probit")

# Nonparametric logistic regression
hunua = transform(hunua, a.5 = sqrt(altitude))    # Transformation of altitude
fit1 = vglm(agaaus ~ poly(a.5, 2), quasibinomialff, hunua)
fit2 = vgam(agaaus ~ s(a.5, df=2), quasibinomialff, hunua)
plot(fit2, se=TRUE, llwd=2, lcol="red", scol="red",
     xlab="sqrt(altitude)", ylim=c(-3,1),
     main="GAM and quadratic GLM fitted to species data")
plotvgam(fit1, se=TRUE, lcol="blue", scol="blue", add=TRUE, llwd=2)
fit1@misc$dispersion   # dispersion parameter
logLik(fit1)

# Here, the dispersion parameter defaults to 1
fit0 = vglm(agaaus ~ poly(a.5, 2), binomialff, hunua)
fit0@misc$dispersion   # dispersion parameter

Run the code above in your browser using DataLab