pneumo = transform(pneumo, let = log(exposure.time))
(fit = vglm(cbind(normal, mild, severe) ~ let,
cumulative(parallel = TRUE, reverse = TRUE), pneumo))
fit@y # These are sample proportions
weights(fit, type = "prior", matrix = FALSE) # Number of observations
# Look at the working residuals
nn = nrow(model.matrix(fit, type = "lm"))
M = ncol(predict(fit))
temp = weights(fit, type="working", deriv=TRUE)
wz = m2adefault(temp$weights, M=M) # In array format
wzinv = array(apply(wz, 3, solve), c(M, M, nn))
wresid = matrix(NA, nn, M) # Working residuals
for(ii in 1:nn)
wresid[ii,] = wzinv[,,ii, drop = TRUE] %*% temp$deriv[ii,]
max(abs(c(resid(fit, type = "w")) - c(wresid))) # Should be 0
(z <- predict(fit) + wresid) # Adjusted dependent vector
Run the code above in your browser using DataLab