pdata <- data.frame(x = runif(nn <- 1000))
pdata <- transform(pdata, y1 = rposnegbin(nn, munb = exp(0+2*x), size = exp(1)),
y2 = rposnegbin(nn, munb = exp(1+2*x), size = exp(3)))
fit <- vglm(cbind(y1, y2) ~ x, posnegbinomial, pdata, trace = TRUE)
coef(fit, matrix = TRUE)
dim(depvar(fit)) # dim(fit@y) is not as good
# Another artificial data example
pdata2 <- data.frame(munb = exp(2), size = exp(3)); nn <- 1000
pdata2 <- transform(pdata2, y3 = rposnegbin(nn, munb = munb, size = size))
with(pdata2, table(y3))
fit <- vglm(y3 ~ 1, posnegbinomial, pdata2, trace = TRUE)
coef(fit, matrix = TRUE)
with(pdata2, mean(y3)) # Sample mean
head(with(pdata2, munb/(1-(size/(size+munb))^size)), 1) # Population mean
head(fitted(fit), 3)
head(predict(fit), 3)
# Example: Corbet (1943) butterfly Malaya data
corbet <- data.frame(nindiv = 1:24,
ofreq = c(118, 74, 44, 24, 29, 22, 20, 19, 20, 15, 12,
14, 6, 12, 6, 9, 9, 6, 10, 10, 11, 5, 3, 3))
fit <- vglm(nindiv ~ 1, posnegbinomial, weights = ofreq, data = corbet)
coef(fit, matrix = TRUE)
Coef(fit)
(khat <- Coef(fit)["size"])
pdf2 <- dposnegbin(x = with(corbet, nindiv), mu = fitted(fit), size = khat)
print( with(corbet, cbind(nindiv, ofreq, fitted = pdf2*sum(ofreq))), dig = 1)
with(corbet,
matplot(nindiv, cbind(ofreq, fitted = pdf2*sum(ofreq)), las = 1,
type = "b", ylab = "Frequency", col = c("blue", "orange"),
main = "blue 1s = observe; orange 2s = fitted"))
Run the code above in your browser using DataLab