prob <- 0.2; size <- 10
table(y <- rposbinom(n = 1000, size, prob))
mean(y) # Sample mean
size * prob / (1-(1-prob)^size) # Population mean
(ii <- dposbinom(0:size, size, prob))
cumsum(ii) - pposbinom(0:size, size, prob) # Should be 0s
table(rposbinom(100, size, prob))
table(qposbinom(runif(1000), size, prob))
round(dposbinom(1:10, size, prob) * 1000) # Should be similar
barplot(rbind(dposbinom(x = 0:size, size, prob),
dbinom(x = 0:size, size, prob)),
beside = TRUE, col = c("blue", "green"),
main = paste("Positive-binomial(", size, ",",
prob, ") (blue) vs",
" Binomial(", size, ",", prob, ") (green)", sep = ""),
names.arg = as.character(0:size), las = 1)
# Simulated data example
nn <- 1000; sizeval1 <- 10; sizeval2 <- 20
pdata <- data.frame(x2 = seq(0, 1, length = nn))
pdata <- transform(pdata, prob1 = logit(-2 + 2 * x2, inverse = TRUE),
prob2 = logit(-1 + 1 * x2, inverse = TRUE),
sizev1 = rep(sizeval1, len = nn),
sizev2 = rep(sizeval2, len = nn))
pdata <- transform(pdata, y1 = rposbinom(nn, size = sizev1, prob = prob1),
y2 = rposbinom(nn, size = sizev2, prob = prob2))
with(pdata, table(y1))
with(pdata, table(y2))
# Multivariate response
fit2 <- vglm(cbind(y1, y2) ~ x2, posbinomial(mv = TRUE),
trace = TRUE, pdata, weight = cbind(sizev1, sizev2))
coef(fit2, matrix = TRUE)
Run the code above in your browser using DataLab