str(hspider)
# Fit a rank-1 Poisson CQO
set.seed(111) # This leads to the global solution
hspider[,1:6]=scale(hspider[,1:6]) # Standardize the environmental variables
# vvv p1 = cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi, Auloalbi,
# vvv Pardlugu, Pardmont, Pardnigr, Pardpull, Trocterr, Zoraspin) ~
# vvv WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
# vvv fam = poissonff, data = hspider, Crow1posit=FALSE)
# vvv nos = ncol(p1@y)
# vvv lvplot(p1, y=TRUE, lcol=1:nos, pch=1:nos, pcol=1:nos)
# vvv Coef(p1)
# vvv summary(p1)
# Fit a rank-1 binomial CAO
hsbin <- hspider # Binary species data
hsbin[,-(1:6)] <- as.numeric(hsbin[,-(1:6)] > 0)
set.seed(123)
ahsb1 <- cao(cbind(Alopcune,Arctlute,Auloalbi,Zoraspin) ~
WaterCon + ReflLux, family = binomialff(mv = TRUE),
df1.nl = 2.2, Bestof=3, data = hsbin)
par(mfrow = 2:1, las = 1)
lvplot(ahsb1, type = "predictors", llwd = 2, ylab = "logit p", lcol = 1:9)
persp(ahsb1, rug = TRUE, col = 1:10, lwd = 2)
coef(ahsb1)
Run the code above in your browser using DataLab