require(VGAMdata)
mysubset <- subset(xs.nz, sex == "M" & ethnic == "1" & Study1)
mysubset <- transform(mysubset, BMI = weight / height^2)
BMIdata <- mysubset[, c("age", "BMI")]
BMIdata <- na.omit(BMIdata)
BMIdata <- subset(BMIdata, BMI < 80 & age < 65) # Delete an outlier
summary(BMIdata)
fit <- vgam(BMI ~ s(age, df = c(4, 2)), lms.bcn(zero = 1), BMIdata)
head(predict(fit))
head(fitted(fit))
head(BMIdata)
head(cdf(fit)) # Person 56 is probably overweight, given his age
100 * colMeans(c(depvar(fit)) < fitted(fit)) # Empirical proportions
# Convergence problems? Try this trick: fit0 is a simpler model used for fit1
fit0 <- vgam(BMI ~ s(age, df = 4), lms.bcn(zero = c(1,3)), BMIdata)
fit1 <- vgam(BMI ~ s(age, df = c(4, 2)), lms.bcn(zero = 1), BMIdata,
etastart = predict(fit0))
# Quantile plot
par(bty = "l", mar = c(5, 4, 4, 3) + 0.1, xpd = TRUE)
qtplot(fit, percentiles = c(5, 50, 90, 99), main = "Quantiles",
xlim = c(15, 66), las = 1, ylab = "BMI", lwd = 2, lcol = 4)
# Density plot
ygrid <- seq(15, 43, len = 100) # BMI ranges
par(mfrow = c(1, 1), lwd = 2)
(aa <- deplot(fit, x0 = 20, y = ygrid, xlab = "BMI", col = "black",
main = "Density functions at Age = 20 (black), 42 (red) and 55 (blue)"))
aa <- deplot(fit, x0 = 42, y = ygrid, add = TRUE, llty = 2, col = "red")
aa <- deplot(fit, x0 = 55, y = ygrid, add = TRUE, llty = 4, col = "blue",
Attach = TRUE)
aa@post$deplot # Contains density function values
Run the code above in your browser using DataLab