Last chance! 50% off unlimited learning
Sale ends in
skellam(lmu1 = "loge", lmu2 = "loge", imu1 = NULL, imu2 = NULL,
nsimEIM = 100, parallel = FALSE, zero = NULL)
Links
for more choices and for general information.CommonVGAMffArguments
for more information.
If convergence failure occurs (this CommonVGAMffArguments
for more information.
In particular, setting parallel=TRUE
will constrain the
two means to be equal."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.The mean is $\mu_1 - \mu_2$ (returned as the fitted values) and the variance is $\mu_1 + \mu_2$. Simulated Fisher scoring is implemented.
dskellam
,
dpois
,
poissonff
.sdata <- data.frame(x2 = runif(nn <- 1000))
sdata <- transform(sdata, mu1 = exp(1+x2), mu2 = exp(1+x2))
sdata <- transform(sdata, y = rskellam(nn, mu1, mu2))
fit1 <- vglm(y ~ x2, skellam, sdata, trace = TRUE, crit = "c")
fit2 <- vglm(y ~ x2, skellam(parallel = TRUE), sdata, trace = TRUE)
coef(fit1, matrix = TRUE)
coef(fit2, matrix = TRUE)
summary(fit1)
# Likelihood ratio test for equal means:
pchisq(2 * (logLik(fit1) - logLik(fit2)),
df = fit2@df.residual - fit1@df.residual, lower.tail = FALSE)
Run the code above in your browser using DataLab