# Example 1: simulated data
nn <- 1000
mu1 <- exp(2.5) # also known as lambda1
mu2 <- exp(3)
(phi <- logit(-0.5, inverse = TRUE))
mdata <- data.frame(y = rpois(nn, ifelse(runif(nn) < phi, mu1, mu2)))
fit <- vglm(y ~ 1, mix2poisson, mdata)
coef(fit, matrix = TRUE)
# Compare the results with the truth
round(rbind('Estimated' = Coef(fit), 'Truth' = c(phi, mu1, mu2)), digits = 2)
ty <- with(mdata, table(y))
plot(names(ty), ty, type = "h", main = "Orange=estimate, blue=truth",
ylab = "Frequency", xlab = "y")
abline(v = Coef(fit)[-1], lty = 2, col = "orange", lwd = 2)
abline(v = c(mu1, mu2), lty = 2, col = "blue", lwd = 2)
# Example 2: London Times data (Lange, 1997, p.31)
ltdata1 <- data.frame(deaths = 0:9,
freq = c(162, 267, 271, 185, 111, 61, 27, 8, 3, 1))
ltdata2 <- data.frame(y = with(ltdata1, rep(deaths, freq)))
# Usually this does not work well unless nsimEIM is large
fit <- vglm(deaths ~ 1, weight = freq, data = ltdata1,
mix2poisson(iphi = 0.3, il1 = 1, il2 = 2.5, nsimEIM = 5000))
# This works better in general
fit <- vglm(y ~ 1, mix2poisson(iphi = 0.3, il1 = 1, il2 = 2.5), ltdata2)
coef(fit, matrix = TRUE)
Coef(fit)
Run the code above in your browser using DataLab