
uninormal(lmean = "identitylink", lsd = "loge", lvar = "loge",
var.arg = FALSE, imethod = 1, isd = NULL, parallel = FALSE,
smallno = 1e-05, zero = -2)
Links
for more choices.
Being positive quantities, a log link is the default for the
standard deviation and variance (see va
TRUE
then the second parameter is the variance and
lsd
and esd
are ignored,
else the standard deviation is used
and lvar
and evar
are ignored.explink
then any non-positive value
of eta
is replaced by this quantity (hopefully,
CommonVGAMffArguments
for more information.
If lmean = loge
then try imethod = 2
.
If parallel = TRUE
then the parallelism constraint
is not app"vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.uninormal()
is the new name;
normal1()
is old and will be decommissioned soon.gaussianff
,
posnormal
,
mix2normal
,
normal.vcm
,
Qvar
,
tobit
,
cennormal
,
foldnormal
,
skewnormal
,
double.cennormal
,
SUR
,
huber2
,
studentt
,
binormal
,
dnorm
,
simulate.vlm
.udata <- data.frame(x2 = rnorm(nn <- 200))
udata <- transform(udata,
y1 = rnorm(nn, m = 1 - 3*x2, sd = exp(1 + 0.2*x2)),
y2a = rnorm(nn, m = 1 + 2*x2, sd = exp(1 + 2.0*x2)^0.5),
y2b = rnorm(nn, m = 1 + 2*x2, sd = exp(1 + 2.0*x2)^0.5))
fit1 <- vglm(y1 ~ x2, uninormal(zero = NULL), data = udata, trace = TRUE)
coef(fit1, matrix = TRUE)
fit2 <- vglm(cbind(y2a, y2b) ~ x2, data = udata, trace = TRUE,
uninormal(var = TRUE, parallel = TRUE ~ x2,
zero = NULL))
coef(fit2, matrix = TRUE)
# Generate data from N(mu = theta = 10, sigma = theta) and estimate theta.
theta <- 10
udata <- data.frame(y3 = rnorm(100, m = theta, sd = theta))
fit3a <- vglm(y3 ~ 1, uninormal(lsd = "identitylink"), data = udata,
constraints = list("(Intercept)" = rbind(1, 1)))
fit3b <- vglm(y3 ~ 1, uninormal(lsd = "identitylink", parallel = TRUE ~ 1,
zero = NULL), data = udata)
coef(fit3a, matrix = TRUE)
coef(fit3b, matrix = TRUE) # Same as fit3a
Run the code above in your browser using DataLab