genpoisson(llambda = elogit(min = -1, max = 1), ltheta = "loge",
ilambda = NULL, itheta = NULL,
use.approx = TRUE, imethod = 1, zero = 1)
Links
for more choices.
The $\lambda$ parameter lies at least within the interval
$[-1,1]$; see below for more details.
The $\theta$ parameter TRUE
then an approximation to the expected
information matrix is used, otherwise Newton-Raphson is used.1
or 2
which
specifies the initialization method for the parameters.
If failure to converge occurs try another value
and/or else specify a value for ilambda
and/or itheta
.NULL
then both linear/additive predictors are modelled
as functions of the explanatory variables."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.llambda
is not always appropriate.An ordinary Poisson distribution corresponds to $\lambda = 0$. The mean (returned as the fitted values) is $E(Y) = \theta / (1 - \lambda)$ and the variance is $\theta / (1 - \lambda)^3$.
For more information see Consul and Famoye (2006) for a summary and Consul (1989) for full details.
Jorgensen, B. (1997) The Theory of Dispersion Models. London: Chapman & Hall
Consul, P. C. (1989) Generalized Poisson Distributions: Properties and Applications. New York, USA: Marcel Dekker.
poissonff
.gdata <- data.frame(x2 = runif(nn <- 200))
gdata <- transform(gdata, y1 = rpois(nn, exp(2 - x2))) # Ordinary Poisson data
fit <- vglm(y1 ~ x2, genpoisson(zero = 1), data = gdata, trace = TRUE)
coef(fit, matrix = TRUE)
summary(fit)
Run the code above in your browser using DataLab