genbetaII(lscale = "loge", lshape1.a = "loge", lshape2.p = "loge",
lshape3.q = "loge", iscale = NULL, ishape1.a = NULL,
ishape2.p = NULL, ishape3.q = NULL, lss = TRUE,
gscale = exp(-5:5), gshape1.a = exp(-5:5),
gshape2.p = exp(-5:5), gshape3.q = exp(-5:5),
zero = "shape")
CommonVGAMffArguments
for important information.a
,
scale parameter scale
,
shape parameter p
, and
shape parameter q
.
All four parameters are positive.
See
NULL
means a value is computed internally using
the arguments gscale
, gshape1.a
, etc.CommonVGAMffArguments
for information.
Replaced by iscale
, ishape1.a
etc. if given.CommonVGAMffArguments
for information."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.sinmad
, fisk
, etc.) first, and
then possibly use those models for initial values for this
distribution.
The 4-parameter generalized beta II distribution has density
$$f(y) = a y^{ap-1} / [b^{ap} B(p,q) {1 + (y/b)^a}^{p+q}]$$
for $a > 0$, $b > 0$, $p > 0$, $q > 0$, $y \geq 0$.
Here $B$ is the beta function, and
$b$ is the scale parameter scale
,
while the others are shape parameters.
The mean is
$$E(Y) = b \, \Gamma(p + 1/a) \, \Gamma(q - 1/a) / (\Gamma(p) \, \Gamma(q))$$
provided $-ap < 1 < aq$; these are returned as the fitted values.
This family function handles multiple responses.
Brazauskas, V. (2002) Fisher information matrix for the Feller-Pareto distribution. Statistics & Probability Letters, 59, 159--167.
dgenbetaII
,
betaff
,
betaII
,
dagum
,
sinmad
,
fisk
,
lomax
,
inv.lomax
,
paralogistic
,
inv.paralogistic
,
lino
,
CommonVGAMffArguments
,
vglm.control
.gdata <- data.frame(y = rsinmad(3000, shape1 = exp(1), scale = exp(2),
shape3 = exp(1))) # A special case!
fit <- vglm(y ~ 1, genbetaII(lss = FALSE), data = gdata, trace = TRUE)
fit <- vglm(y ~ 1, data = gdata, trace = TRUE,
genbetaII(ishape1.a = 3, iscale = 7, ishape3.q = 2.3))
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
Run the code above in your browser using DataLab