Learn R Programming

VGAM (version 1.0-5)

dirmul.old: Fitting a Dirichlet-Multinomial Distribution

Description

Fits a Dirichlet-multinomial distribution to a matrix of non-negative integers.

Usage

dirmul.old(link = "loge", ialpha = 0.01, parallel = FALSE, zero = NULL)

Arguments

link

Link function applied to each of the \(M\) (positive) shape parameters \(\alpha_j\) for \(j=1,\ldots,M\). See Links for more choices. Here, \(M\) is the number of columns of the response matrix.

ialpha

Numeric vector. Initial values for the alpha vector. Must be positive. Recycled to length \(M\).

parallel

A logical, or formula specifying which terms have equal/unequal coefficients.

zero

An integer-valued vector specifying which linear/additive predictors are modelled as intercepts only. The values must be from the set {1,2,…,\(M\)}.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, rrvglm and vgam.

Details

The Dirichlet-multinomial distribution, which is somewhat similar to a Dirichlet distribution, has probability function $$P(Y_1=y_1,\ldots,Y_M=y_M) = {2y_{*} \choose {y_1,\ldots,y_M}} \frac{\Gamma(\alpha_{+})}{\Gamma(2y_{*}+\alpha_{+})} \prod_{j=1}^M \frac{\Gamma(y_j+\alpha_{j})}{\Gamma(\alpha_{j})}$$ for \(\alpha_j > 0\), \(\alpha_+ = \alpha_1 + \cdots + \alpha_M\), and \(2y_{*} = y_1 + \cdots + y_M\). Here, \(a \choose b\) means ``\(a\) choose \(b\)'' and refers to combinations (see choose). The (posterior) mean is $$E(Y_j) = (y_j + \alpha_j) / (2y_{*} + \alpha_{+})$$ for \(j=1,\ldots,M\), and these are returned as the fitted values as a \(M\)-column matrix.

References

Lange, K. (2002) Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York: Springer-Verlag.

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011) Statistical Distributions, Hoboken, NJ, USA: John Wiley and Sons, Fourth edition.

Paul, S. R., Balasooriya, U. and Banerjee, T. (2005) Fisher information matrix of the Dirichlet-multinomial distribution. Biometrical Journal, 47, 230--236.

Tvedebrink, T. (2010) Overdispersion in allelic counts and \(\theta\)-correction in forensic genetics. Theoretical Population Biology, 78, 200--210.

See Also

dirmultinomial, dirichlet, betabinomialff, multinomial.

Examples

Run this code
# NOT RUN {
# Data from p.50 of Lange (2002)
alleleCounts <- c(2, 84, 59, 41, 53, 131, 2, 0,
       0, 50, 137, 78, 54, 51, 0, 0,
       0, 80, 128, 26, 55, 95, 0, 0,
       0, 16, 40, 8, 68, 14, 7, 1)
dim(alleleCounts) <- c(8, 4)
alleleCounts <- data.frame(t(alleleCounts))
dimnames(alleleCounts) <- list(c("White","Black","Chicano","Asian"),
                    paste("Allele", 5:12, sep = ""))

set.seed(123)  # @initialize uses random numbers
fit <- vglm(cbind(Allele5,Allele6,Allele7,Allele8,Allele9,
                  Allele10,Allele11,Allele12) ~ 1, dirmul.old,
             trace = TRUE, crit = "c", data = alleleCounts)

(sfit <- summary(fit))
vcov(sfit)
round(eta2theta(coef(fit), fit@misc$link, fit@misc$earg), digits = 2)  # not preferred
round(Coef(fit), digits = 2)  # preferred
round(t(fitted(fit)), digits = 4)  # 2nd row of Table 3.5 of Lange (2002)
coef(fit, matrix = TRUE)


pfit <- vglm(cbind(Allele5,Allele6,Allele7,Allele8,Allele9,
                   Allele10,Allele11,Allele12) ~ 1,
             dirmul.old(parallel = TRUE), trace = TRUE,
             data = alleleCounts)
round(eta2theta(coef(pfit, matrix = TRUE), pfit@misc$link,
                pfit@misc$earg), digits = 2)  # 'Right' answer
round(Coef(pfit), digits = 2)  # 'Wrong' answer due to parallelism constraint
# }

Run the code above in your browser using DataLab