# NOT RUN {
fill(runif(5))
fill(runif(5), ncol = 3)
fill(runif(5), val = 1, ncol = 3)
# Generate eyes data for the examples below. Eyes are independent (OR=1).
nn <- 1000 # Number of people
eyesdata <- data.frame(lop = round(runif(nn), 2),
rop = round(runif(nn), 2),
age = round(rnorm(nn, 40, 10)))
eyesdata <- transform(eyesdata,
mop = (lop + rop) / 2, # Mean ocular pressure
op = (lop + rop) / 2, # Value unimportant unless plotting
# op = lop, # Choose this if plotting
eta1 = 0 - 2*lop + 0.04*age, # Linear predictor for left eye
eta2 = 0 - 2*rop + 0.04*age) # Linear predictor for right eye
eyesdata <- transform(eyesdata,
leye = rbinom(nn, size = 1, prob = logit(eta1, inverse = TRUE)),
reye = rbinom(nn, size = 1, prob = logit(eta2, inverse = TRUE)))
# Example 1
# All effects are linear
fit1 <- vglm(cbind(leye,reye) ~ op + age,
family = binom2.or(exchangeable = TRUE, zero = 3),
data = eyesdata, trace = TRUE,
xij = list(op ~ lop + rop + fill(lop)),
form2 = ~ op + lop + rop + fill(lop) + age)
head(model.matrix(fit1, type = "lm")) # LM model matrix
head(model.matrix(fit1, type = "vlm")) # Big VLM model matrix
coef(fit1)
coef(fit1, matrix = TRUE) # Unchanged with 'xij'
constraints(fit1)
max(abs(predict(fit1)-predict(fit1, new = eyesdata))) # Predicts correctly
summary(fit1)
# }
# NOT RUN {
plotvgam(fit1, se = TRUE) # Wrong, e.g., because it plots against op, not lop.
# So set op = lop in the above for a correct plot.
# }
# NOT RUN {
# Example 2
# Model OR as a linear function of mop
fit2 <- vglm(cbind(leye,reye) ~ op + age, data = eyesdata, trace = TRUE,
binom2.or(exchangeable = TRUE, zero = NULL),
xij = list(op ~ lop + rop + mop),
form2 = ~ op + lop + rop + mop + age)
head(model.matrix(fit2, type = "lm")) # LM model matrix
head(model.matrix(fit2, type = "vlm")) # Big VLM model matrix
coef(fit2)
coef(fit2, matrix = TRUE) # Unchanged with 'xij'
max(abs(predict(fit2) - predict(fit2, new = eyesdata))) # Predicts correctly
summary(fit2)
# }
# NOT RUN {
plotvgam(fit2, se = TRUE) # Wrong because it plots against op, not lop.
# }
# NOT RUN {
# Example 3. This model uses regression splines on ocular pressure.
# It uses a trick to ensure common basis functions.
BS <- function(x, ...)
sm.bs(c(x,...), df = 3)[1:length(x), , drop = FALSE] # trick
fit3 <- vglm(cbind(leye,reye) ~ BS(lop,rop) + age,
family = binom2.or(exchangeable = TRUE, zero = 3),
data = eyesdata, trace = TRUE,
xij = list(BS(lop,rop) ~ BS(lop,rop) +
BS(rop,lop) +
fill(BS(lop,rop))),
form2 = ~ BS(lop,rop) + BS(rop,lop) + fill(BS(lop,rop)) +
lop + rop + age)
head(model.matrix(fit3, type = "lm")) # LM model matrix
head(model.matrix(fit3, type = "vlm")) # Big VLM model matrix
coef(fit3)
coef(fit3, matrix = TRUE)
summary(fit3)
fit3@smart.prediction
max(abs(predict(fit3) - predict(fit3, new = eyesdata))) # Predicts correctly
predict(fit3, new = head(eyesdata)) # Note the 'scalar' OR, i.e., zero=3
max(abs(head(predict(fit3)) -
predict(fit3, new = head(eyesdata)))) # Should be 0
# }
# NOT RUN {
plotvgam(fit3, se = TRUE, xlab = "lop") # Correct
# }
# NOT RUN {
# Example 4. Capture-recapture model with ephemeral and enduring
# memory effects. Similar to Yang and Chao (2005), Biometrics.
deermice <- transform(deermice, Lag1 = y1)
M.tbh.lag1 <-
vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight + Lag1,
posbernoulli.tb(parallel.t = FALSE ~ 0,
parallel.b = FALSE ~ 0,
drop.b = FALSE ~ 1),
xij = list(Lag1 ~ fill(y1) + fill(y2) + fill(y3) + fill(y4) +
fill(y5) + fill(y6) +
y1 + y2 + y3 + y4 + y5),
form2 = ~ sex + weight + Lag1 +
fill(y1) + fill(y2) + fill(y3) + fill(y4) +
fill(y5) + fill(y6) +
y1 + y2 + y3 + y4 + y5 + y6,
data = deermice, trace = TRUE)
coef(M.tbh.lag1)
# }
Run the code above in your browser using DataLab