
Estimates the shape and scale parameters of the Birnbaum-Saunders distribution by maximum likelihood estimation.
bisa(lscale = "loglink", lshape = "loglink", iscale = 1,
ishape = NULL, imethod = 1, zero = "shape", nowarning = FALSE)
Logical. Suppress a warning? Ignored for VGAM 0.9-7 and higher.
Parameter link functions applied to the shape and scale parameters
(Links
for more choices.
A log link is the default for both because they are positive.
Initial values for NULL
means an initial value is chosen internally using
imethod
.
An integer with value 1
or 2
or 3
which
specifies the initialization method. If failure to converge occurs
try the other value, or else specify a value for
ishape
and/or iscale
.
Specifies which linear/additive predictor is modelled as intercept-only.
If used, choose one value from the set {1,2}.
See CommonVGAMffArguments
for more details.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
The (two-parameter) Birnbaum-Saunders distribution
has a cumulative distribution function that can be written as
pnorm
),
Note that
Lemonte, A. J. and Cribari-Neto, F. and Vasconcellos, K. L. P. (2007) Improved statistical inference for the two-parameter Birnbaum-Saunders distribution. Computational Statistics \& Data Analysis, 51, 4656--4681.
Birnbaum, Z. W. and Saunders, S. C. (1969) A new family of life distributions. Journal of Applied Probability, 6, 319--327.
Birnbaum, Z. W. and Saunders, S. C. (1969) Estimation for a family of life distributions with applications to fatigue. Journal of Applied Probability, 6, 328--347.
Engelhardt, M. and Bain, L. J. and Wright, F. T. (1981) Inferences on the parameters of the Birnbaum-Saunders fatigue life distribution based on maximum likelihood estimation. Technometrics, 23, 251--256.
Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, 2nd edition, Volume 2, New York: Wiley.
# NOT RUN {
bdata1 <- data.frame(x2 = runif(nn <- 1000))
bdata1 <- transform(bdata1, shape = exp(-0.5 + x2), scale = exp(1.5))
bdata1 <- transform(bdata1, y = rbisa(nn, scale, shape))
fit1 <- vglm(y ~ x2, bisa(zero = 1), data = bdata1, trace = TRUE)
coef(fit1, matrix = TRUE)
# }
# NOT RUN {
bdata2 <- data.frame(shape = exp(-0.5), scale = exp(0.5))
bdata2 <- transform(bdata2, y = rbisa(nn, scale, shape))
fit <- vglm(y ~ 1, bisa, data = bdata2, trace = TRUE)
with(bdata2, hist(y, prob = TRUE, ylim = c(0, 0.5), col = "lightblue"))
coef(fit, matrix = TRUE)
with(bdata2, mean(y))
head(fitted(fit))
x <- with(bdata2, seq(0, max(y), len = 200))
lines(dbisa(x, Coef(fit)[1], Coef(fit)[2]) ~ x, data = bdata2,
col = "orange", lwd = 2)
# }
Run the code above in your browser using DataLab