# NOT RUN {
gdata <- data.frame(interspike = c(68, 41, 82, 66, 101, 66, 57, 41, 27, 78,
59, 73, 6, 44, 72, 66, 59, 60, 39, 52,
50, 29, 30, 56, 76, 55, 73, 104, 104, 52,
25, 33, 20, 60, 47, 6, 47, 22, 35, 30,
29, 58, 24, 34, 36, 34, 6, 19, 28, 16,
36, 33, 12, 26, 36, 39, 24, 14, 28, 13,
2, 30, 18, 17, 28, 9, 28, 20, 17, 12,
19, 18, 14, 23, 18, 22, 18, 19, 26, 27,
23, 24, 35, 22, 29, 28, 17, 30, 34, 17,
20, 49, 29, 35, 49, 25, 55, 42, 29, 16)) # See Zeger and Qaqish (1988)
gdata <- transform(gdata, spikenum = seq(interspike))
bvalue <- 0.1 # .Machine$double.xmin # Boundary value
fit <- vglm(interspike ~ 1, trace = TRUE, data = gdata,
garma(loglink(bvalue = bvalue),
p = 2, coefstart = c(4, 0.3, 0.4)))
summary(fit)
coef(fit, matrix = TRUE)
Coef(fit) # A bug here
# }
# NOT RUN {
with(gdata, plot(interspike, ylim = c(0, 120), las = 1,
xlab = "Spike Number", ylab = "Inter-Spike Time (ms)", col = "blue"))
with(gdata, lines(spikenum[-(1:fit@misc$plag)], fitted(fit), col = "orange"))
abline(h = mean(with(gdata, interspike)), lty = "dashed", col = "gray")
# }
Run the code above in your browser using DataLab