# Example 1
data("ships", package = "MASS")
Shipmodel <- vglm(incidents ~ type + year + period,
poissonff, offset = log(service),
# trace = TRUE, model = TRUE,
data = ships, subset = (service > 0))
# Easiest form of input
fit1 <- rcim(Qvar(Shipmodel, "type"), uninormal("explink"), maxit = 99)
qvar(fit1) # Easy method to get the quasi-variances
qvar(fit1, se = TRUE) # Easy method to get the quasi-standard errors
(quasiVar <- exp(diag(fitted(fit1))) / 2) # Version 1
(quasiVar <- diag(predict(fit1)[, c(TRUE, FALSE)]) / 2) # Version 2
(quasiSE <- sqrt(quasiVar))
# Another form of input
fit2 <- rcim(Qvar(Shipmodel, coef.ind = c(0, 2:5), reference.name = "typeA"),
uninormal("explink"), maxit = 99)
if (FALSE) qvplot(fit2, col = "green", lwd = 3, scol = "blue", slwd = 2, las = 1)
# The variance-covariance matrix is another form of input (not recommended)
fit3 <- rcim(Qvar(cbind(0, rbind(0, vcov(Shipmodel)[2:5, 2:5])),
labels = c("typeA", "typeB", "typeC", "typeD", "typeE"),
estimates = c(typeA = 0, coef(Shipmodel)[2:5])),
uninormal("explink"), maxit = 99)
(QuasiVar <- exp(diag(fitted(fit3))) / 2) # Version 1
(QuasiVar <- diag(predict(fit3)[, c(TRUE, FALSE)]) / 2) # Version 2
(QuasiSE <- sqrt(quasiVar))
if (FALSE) qvplot(fit3)
# Example 2: a model with M > 1 linear predictors
if (FALSE) require("VGAMdata")
xs.nz.f <- subset(xs.nz, sex == "F")
xs.nz.f <- subset(xs.nz.f, !is.na(babies) & !is.na(age) & !is.na(ethnicity))
xs.nz.f <- subset(xs.nz.f, ethnicity != "Other")
clist <- list("sm.bs(age, df = 4)" = rbind(1, 0),
"sm.bs(age, df = 3)" = rbind(0, 1),
"ethnicity" = diag(2),
"(Intercept)" = diag(2))
fit1 <- vglm(babies ~ sm.bs(age, df = 4) + sm.bs(age, df = 3) + ethnicity,
zipoissonff(zero = NULL), xs.nz.f,
constraints = clist, trace = TRUE)
Fit1 <- rcim(Qvar(fit1, "ethnicity", which.linpred = 1),
uninormal("explink", imethod = 1), maxit = 99, trace = TRUE)
Fit2 <- rcim(Qvar(fit1, "ethnicity", which.linpred = 2),
uninormal("explink", imethod = 1), maxit = 99, trace = TRUE)
if (FALSE) par(mfrow = c(1, 2))
qvplot(Fit1, scol = "blue", pch = 16, main = expression(eta[1]),
slwd = 1.5, las = 1, length.arrows = 0.07)
qvplot(Fit2, scol = "blue", pch = 16, main = expression(eta[2]),
slwd = 1.5, las = 1, length.arrows = 0.07)
Run the code above in your browser using DataLab