# Fit the proportional odds model, McCullagh and Nelder (1989,p.179)
pneumo <- transform(pneumo, let = log(exposure.time))
(fit <- vglm(cbind(normal, mild, severe) ~ let, propodds, pneumo))
depvar(fit) # Sample proportions
weights(fit, type = "prior") # Number of observations
coef(fit, matrix = TRUE)
constraints(fit) # Constraint matrices
summary(fit)
# Check that the model is linear in let ----------------------
fit2 <- vgam(cbind(normal, mild, severe) ~ s(let, df = 2), propodds,
pneumo)
if (FALSE) plot(fit2, se = TRUE, lcol = 2, scol = 2)
# Check the proportional odds assumption with a LRT ----------
(fit3 <- vglm(cbind(normal, mild, severe) ~ let,
cumulative(parallel = FALSE, reverse = TRUE), pneumo))
pchisq(deviance(fit) - deviance(fit3),
df = df.residual(fit) - df.residual(fit3), lower.tail = FALSE)
lrtest(fit3, fit) # Easier
Run the code above in your browser using DataLab