nn <- 10; mysize <- 20; set.seed(123)
bdata <- data.frame(x2 = rnorm(nn))
bdata <- transform(bdata,
y1 = rbinom(nn, size = mysize, p = logitlink(1+x2, inverse = TRUE)),
y2 = rbinom(nn, size = mysize, p = logitlink(1+x2, inverse = TRUE)),
f1 = factor(as.numeric(rbinom(nn, size = 1,
p = logitlink(1+x2, inverse = TRUE)))))
(fit1 <- vglm(cbind(y1, aaa = mysize - y1) ~ x2, # Matrix response (2-colns)
binomialff, data = bdata))
(fit2 <- vglm(f1 ~ x2, binomialff, model = TRUE, data = bdata)) # Factor response
set.seed(123); simulate(fit1, nsim = 8)
set.seed(123); c(simulate(fit2, nsim = 3)) # Use c() when model = TRUE
# An n x N x F example
set.seed(123); n <- 100
bdata <- data.frame(x2 = runif(n), x3 = runif(n))
bdata <- transform(bdata, y1 = rnorm(n, 1 + 2 * x2),
y2 = rnorm(n, 3 + 4 * x2))
fit1 <- vglm(cbind(y1, y2) ~ x2, binormal(eq.sd = TRUE), data = bdata)
nsim <- 1000 # Number of simulations for each observation
my.sims <- simulate(fit1, nsim = nsim)
dim(my.sims) # A data frame
aaa <- array(unlist(my.sims), c(n, nsim, ncol(fitted(fit1)))) # n by N by F
summary(rowMeans(aaa[, , 1]) - fitted(fit1)[, 1]) # Should be all 0s
summary(rowMeans(aaa[, , 2]) - fitted(fit1)[, 2]) # Should be all 0s
# An n x F x N example
n <- 100; set.seed(111); nsim <- 1000
zdata <- data.frame(x2 = runif(n))
zdata <- transform(zdata, lambda1 = loglink(-0.5 + 2 * x2, inverse = TRUE),
lambda2 = loglink( 0.5 + 2 * x2, inverse = TRUE),
pstr01 = logitlink( 0, inverse = TRUE),
pstr02 = logitlink(-1.0, inverse = TRUE))
zdata <- transform(zdata, y1 = rzipois(n, lambda = lambda1, pstr0 = pstr01),
y2 = rzipois(n, lambda = lambda2, pstr0 = pstr02))
zip.fit <- vglm(cbind(y1, y2) ~ x2, zipoissonff, data = zdata, crit = "coef")
my.sims <- simulate(zip.fit, nsim = nsim)
dim(my.sims) # A data frame
aaa <- array(unlist(my.sims), c(n, ncol(fitted(zip.fit)), nsim)) # n by F by N
summary(rowMeans(aaa[, 1, ]) - fitted(zip.fit)[, 1]) # Should be all 0s
summary(rowMeans(aaa[, 2, ]) - fitted(zip.fit)[, 2]) # Should be all 0s
Run the code above in your browser using DataLab