
Estimates the 2-parameter Inverse Gamma distribution by maximum likelihood estimation.
invgamma2mr(lmu = "loglink",
lshape = logofflink(offset = -2),
parallel = FALSE,
ishape = NULL,
imethod = 1,
zero = "shape")
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.
Link functions applied to the (positives) mu and shape
parameters (called gamma2
.
See CommonVGAMffArguments
for further information.
Same as gamma2
.
Details at CommonVGAMffArguments
.
Optional initial value for shape, same as
gamma2
Same as gamma2
.
Numeric or character vector. Position or name(s) of the
parameters/linear predictors to be
modeled as intercept--only. Default is "shape"
. Details at
CommonVGAMffArguments
.
Note that zero
can be a numeric or a character
vector specifying the position of the names
(partially or not) of the linear predictor modeled as intercept only.
In this family function such names are
c("mu", "shape")
.
Numeric values can be entered as usual.
See CommonVGAMffArguments
for further details.
Victor Miranda and T. W. Yee
The Gamma distribution and the Inverse Gamma distribution are related
as follows:Let X be a random variable distributed as
The Inverse Gamma density function is given by
for gamma
. The mean of Y is
logloglink
. Then, by default, the two
linear/additive predictors are
This VGAM family function handles multiple reponses by
implementing Fisher scoring and unlike
gamma2
, the working-weight matrices
are not diagonal.
The Inverse Gamma distribution is right-skewed and either for small values
of
McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd ed. London, UK. Chapman & Hall.
invgammaDist
,
gamma2
for the 2-parameter gamma distribution,
GammaDist
,
CommonVGAMffArguments
,
#------------------------------------------------------------------------#
# Essentially fitting a 2-parameter inverse gamma distribution
# with 2 responses.
set.seed(101)
y1 = rinvgamma(n = 500, scale = exp(2.0), shape = exp(2.0))
y2 = rinvgamma(n = 500, scale = exp(2.5), shape = exp(2.5))
gdata <- data.frame(y1, y2)
fit1 <- vglm(cbind(y1, y2) ~ 1,
family = invgamma2mr(zero = NULL,
# OPTIONAL INITIAL VALUE
# ishape = exp(2),
imethod = 1),
data = gdata, trace = TRUE)
Coef(fit1)
c(Coef(fit1), log(mean(gdata$y1)), log(mean(gdata$y2)))
summary(fit1)
vcov(fit1, untransform = TRUE)
#------------------------------------------------------------------------#
# An example including one covariate.
# Note that the x2 affects the shape parameter, which implies that both,
# 'mu' and 'shape' are affected.
# Consequently, zero must be set as NULL !
x2 <- runif(1000)
gdata <- data.frame(y3 = rinvgamma(n = 1000,
scale = exp(2.0),
shape = exp(2.0 + x2)))
fit2 <- vglm(y3 ~ x2,
family = invgamma2mr(lshape = "loglink", zero = NULL),
data = gdata, trace = TRUE)
coef(fit2, matrix = TRUE)
summary(fit2)
vcov(fit2)
Run the code above in your browser using DataLab