VIM
GUI for transformation and
standardization of the data.prepare(x, scaling = c("none","classical","MCD","robust","onestep"),
transformation = c("none","minus","reciprocal","logarithm",
"exponential","boxcox","clr","ilr","alr"), alpha = NULL,
powers = NULL, start = 0, alrVar)
data.frame
."none"
, "classical"
, MCD
, "robust"
and
"onestep"
."none"
, "minus"
, "reciprocal"
, "logarithm"
,
"exponential"
, "boxcox"
, "clr"
, "ilr"
and
scaling="MCD"
). See
covMcd
.transformation="boxcox"
). If NULL
, the
powers are calculated with function box.cox.powers<
transformation="boxcox"
).transformation="alr"
)."none"
: no transformation is used. "logarithm"
: compute the the logarithm (to the base 10).
"boxcox"
: apply a Box-Cox transformation. Powers may be specified
or calculated with the function box.cox.powers
.
Standardization:
"none"
: no standardization is used.
"classical"
: apply a z-Transformation on each variable
by using function scale
.
"robust"
: apply a robustified z-Transformation by using
median and MAD.
scale
, box.cox.powers
data(sleep, package = "VIM")
x <- sleep[, c("BodyWgt", "BrainWgt")]
prepare(x, scaling = "robust", transformation = "logarithm")
Run the code above in your browser using DataLab