Learn R Programming

VLF (version 1.1)

concordant.to.modalchanges: Concordant Residue Changes

Description

Deternubes how many concordant aaVLFs have changed type of amino acid from the modal amino acid sequence. Amino acid residue types are polar charged, polar uncharged, non-polar, and amino acids with a unique side group.

Usage

concordant.to.modalchanges(matched, modal)

Value

A vector containing the number of concordant aaVLFs that changed amino acid residue type, and the number that contained the same residue type.

Arguments

matched

A list containing the concordant aaVLFs and their properties (e.g., sequence position).

modal

A vector containing the modal amino acid sequence.

Author

Taryn B. T. Athey and Paul D. McNicholas

Details

The matched argument can be calculated using the overall.matched function. The modal argument can be calculated using the aa.MODE function.

Examples

Run this code
if (FALSE) #Nucleotide VLF analysis
data(birds)
species.names <- birds[,2]
specimen.Number <- nrow(birds)
rownames(birds) <- species.names
Nuc.count <- count.function(birds, specimen.Number, 648)
frequency.matrix <- ffrequency.matrix.function(Nuc.count, 648)
birdSpec.freq <- specimen.frequencies(frequency.matrix, birds, specimen.Number, species.names, 648)
Bird_specimen_VLFcount <- VLF.count.spec(birdSpec.freq, 0.001, 648)
bird_VLFconvert <- VLF.convert.matrix(birds, birdSpec.freq, 0.001, 648)
bird_VLFnuc <- VLF.nucleotides(bird_VLFconvert, birds, 648)
bird_VLFreduced <- VLF.reduced(bird_VLFnuc, Bird_specimen_VLFcount, 648)
bird_species <- separate(bird_VLFreduced)
birds_singleAndShared <- find.singles(bird_species, 648)

#Amino Acid VLF Analysis
data(birds_aminoAcids)
birds_aminoAcid_speciesNames <- birds_aminoAcids[,2]
aminoAcids_specimenNumber <- nrow(birds_aminoAcids)
birds_aminoAcid_count <- aa.count.function(birds_aminoAcids, 216)
aminoAcid_frequency.Matrix <- aa.frequency.matrix.function(birds_aminoAcid_count, 216)
bird_aminoAcid_frequencies <- aa.specimen.frequencies(aminoAcid_frequency.Matrix, birds_aminoAcids, 
    birds_aminoAcid_speciesNames, 216)
aminoAcid_Modal <- aa.MODE(aminoAcid_frequency.Matrix, 216)
birds_aminoAcid_specimenVLFcount <- aa.VLF.count.spec(bird_aminoAcid_frequencies, 0.001, 216)
birds_aaVLFconvert <- aa.VLF.convert.matrix(birds_aminoAcids, bird_aminoAcid_frequencies, 0.001, 
    216)
birds_aminoAcidVLFs <- VLF.aminoAcids(birds_aaVLFconvert, birds_aminoAcids, 216)
birds_aaVLFreduced <- aa.VLF.reduced(birds_aminoAcidVLFs, birds_aminoAcid_specimenVLFcount, 216)
birds_aaSpecies <- separate(birds_aaVLFreduced)
birds_aminoAcid_singleAndShared <- aa.find.singles(birds_aaSpecies, 216)

#Concordance Analysis
VLF_match <- find.matching(bird_VLFreduced, birds_aaVLFreduced, 648, 216)
position_matchingNuc <- nucleotide.matching.positions(VLF_match[[2]], 648)
position_matchingAA <- aminoAcid.matching.positions(VLF_match[[1]], 216)
matching_comparison <- overall.matched(position_matchingNuc, position_matchingAA, 648, 216)
concordant_aaType_change <- concordant.to.modalchanges(matching_comparison, aminoAcid_Modal)

Run the code above in your browser using DataLab