Learn R Programming

VaRES (version 1.0.2)

kumloglogis: Kumaraswamy log-logistic distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy log-logistic distribution due to de Santana et al. (2012) given by $$\begin{array}{ll} &\displaystyle f (x) = \frac {a b \beta \alpha^\beta x^{a \beta - 1}} {\left( \alpha^\beta + x^\beta \right)^{a + 1}} \left[ 1 - \frac {x^{a \beta}}{\left( \alpha^\beta + x^\beta \right)^a} \right]^{b - 1}, \\ &\displaystyle F (x) = \left[ 1 - \frac {x^{a \beta}}{\left( \alpha^\beta + x^\beta \right)^a} \right]^b, \\ &\displaystyle {\rm VaR}_p (X) = \alpha \left\{ \left[ 1 - (1 - p)^{1 / b} \right]^{1 / a} - 1 \right\}^{-1 / \beta}, \\ &\displaystyle {\rm ES}_p (X) = \frac {\alpha}{p} \int_0^p \left\{ \left[ 1 - (1 - v)^{1 / b} \right]^{1 / a} - 1 \right\}^{-1 / \beta} dv \end{array}$$ for \(x > 0\), \(0 < p < 1\), \(\alpha > 0\), the scale parameter, \(\beta > 0\), the first shape parameter, \(a > 0\), the second shape parameter, and \(b > 0\), the third shape parameter.

Usage

dkumloglogis(x, a=1, b=1, alpha=1, beta=1, log=FALSE)
pkumloglogis(x, a=1, b=1, alpha=1, beta=1, log.p=FALSE, lower.tail=TRUE)
varkumloglogis(p, a=1, b=1, alpha=1, beta=1, log.p=FALSE, lower.tail=TRUE)
eskumloglogis(p, a=1, b=1, alpha=1, beta=1)

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Arguments

x

scaler or vector of values at which the pdf or cdf needs to be computed

p

scaler or vector of values at which the value at risk or expected shortfall needs to be computed

alpha

the value of the scale parameter, must be positive, the default is 1

beta

the value of the first shape parameter, must be positive, the default is 1

a

the value of the second shape parameter, must be positive, the default is 1

b

the value of the third shape parameter, must be positive, the default is 1

log

if TRUE then log(pdf) are returned

log.p

if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail

if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Author

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Examples

Run this code
x=runif(10,min=0,max=1)
dkumloglogis(x)
pkumloglogis(x)
varkumloglogis(x)
eskumloglogis(x)

Run the code above in your browser using DataLab