Learn R Programming

VaRES (version 1.0.2)

triangular: Triangular distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the triangular distribution given by $$\begin{array}{ll} &\displaystyle f (x) = \left\{ \begin{array}{ll} \displaystyle 0, & \mbox{if $x < a$,} \\ \\ \displaystyle \frac {2 (x - a)}{(b - a) (c - a)}, & \mbox{if $a \leq x \leq c$,} \\ \\ \displaystyle \frac {2 (b - x)}{(b - a) (b - c)}, & \mbox{if $c < x \leq b$,} \\ \\ \displaystyle 0, & \mbox{if $b < x$,} \end{array} \right. \\ &\displaystyle F (x) = \left\{ \begin{array}{ll} \displaystyle 0, & \mbox{if $x < a$,} \\ \\ \displaystyle \frac {(x - a)^2}{(b - a) (c - a)}, & \mbox{if $a \leq x \leq c$,} \\ \\ \displaystyle 1 - \frac {(b - x)^2}{(b - a) (b - c)}, & \mbox{if $c < x \leq b$,} \\ \\ \displaystyle 1, & \mbox{if $b < x$,} \end{array} \right. \\ &\displaystyle {\rm VaR}_p (X) = \left\{ \begin{array}{ll} \displaystyle a + \sqrt{p (b - a) (c - a)}, & \mbox{if $0 < p < \frac {c - a}{b - a}$,} \\ \\ \displaystyle b - \sqrt{(1 - p) (b - a) (b - c)}, & \mbox{if $\frac {c - a}{b - a} \leq p < 1$,} \end{array} \right. \\ &\displaystyle {\rm ES}_p (X) = \left\{ \begin{array}{ll} \displaystyle a + \frac {2}{3} \sqrt{p (b - a) (c - a)}, & \mbox{if $0 < p < \frac {c - a}{b - a}$,} \\ \\ \displaystyle b + \frac {a - c}{p} + \frac {2 (2 c - a - b)}{3 p} +2 \sqrt{(b - a) (b - c)} \frac {(1 - p)^{3/2}}{3 p}, & \mbox{if $\frac {c - a}{b - a} \leq p < 1$} \end{array} \right. \end{array}$$ for \(a \leq x \leq b\), \(0 < p < 1\), \(-\infty < a < \infty\), the first location parameter, \(-\infty < a < c < \infty\), the second location parameter, and \(-\infty < c < b < \infty\), the third location parameter.

Usage

dtriangular(x, a=0, b=2, c=1, log=FALSE)
ptriangular(x, a=0, b=2, c=1, log.p=FALSE, lower.tail=TRUE)
vartriangular(p, a=0, b=2, c=1, log.p=FALSE, lower.tail=TRUE)
estriangular(p, a=0, b=2, c=1)

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Arguments

x

scaler or vector of values at which the pdf or cdf needs to be computed

p

scaler or vector of values at which the value at risk or expected shortfall needs to be computed

a

the value of the first location parameter, can take any real value, the default is zero

c

the value of the second location parameter, can take any real value but must be greater than a, the default is 1

b

the value of the third location parameter, can take any real value but must be greater than c, the default is 2

log

if TRUE then log(pdf) are returned

log.p

if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail

if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Author

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Examples

Run this code
x=runif(10,min=0,max=1)
dtriangular(x)
ptriangular(x)
vartriangular(x)
estriangular(x)

Run the code above in your browser using DataLab