Learn R Programming

VarSelLCM (version 2.1.3.1)

Variable Selection for Model-Based Clustering of Mixed-Type Data Set with Missing Values

Description

Full model selection (detection of the relevant features and estimation of the number of clusters) for model-based clustering (see reference here ). Data to analyze can be continuous, categorical, integer or mixed. Moreover, missing values can occur and do not necessitate any pre-processing. Shiny application permits an easy interpretation of the results.

Copy Link

Version

Install

install.packages('VarSelLCM')

Monthly Downloads

350

Version

2.1.3.1

License

GPL (>= 2)

Maintainer

Last Published

October 14th, 2020

Functions in VarSelLCM (2.1.3.1)

VarSelLCM-package

Variable Selection for Model-Based Clustering of Mixed-Type Data Set with Missing Values
VSLCMmodel-class

Constructor of '>VSLCMmodel class
VarSelImputation

Imputation of missing values
VSLCMpartitions-class

Constructor of '>VSLCMpartitions class
VSLCMresults-class

Constructor of '>VSLCMresults class
heart

Statlog (Heart) Data Set
fitted.values

Extract the partition or the probabilities of classification
VSLCMparamContinuous-class

Constructor of '>VSLCMparamContinuous class
coef

Extract the parameters
predict

Prediction of the cluster memberships
VarSelShiny

Shiny app for analyzing results from VarSelCluster
plot

VSLCMparamInteger-class

Constructor of '>VSLCMparamInteger class
coefficients

Extract the parameters
fitted

Extract the partition or the probabilities of classification
VarSelCluster

Variable selection and clustering.
VSLCMstrategy-class

Constructor of '>VSLCMstrategy class
print

Print function.
summary

Summary function.
ARI

Adjusted Rand Index
AIC

AIC criterion.
MICL

MICL criterion
VSLCMcriteria-class

Constructor of '>VSLCMcriteria class
VSLCMdata-class

Constructor of '>VSLCMdata class
ICL

ICL criterion
BIC

BIC criterion.
VSLCMparam-class

Constructor of '>VSLCMparam class
VSLCMparamCategorical-class

Constructor of '>VSLCMparamCategorical class