Learn R Programming

VineCopula (version 2.6.0)

VineCopula-package: tools:::Rd_package_title("VineCopula")

Description

tools:::Rd_package_description("VineCopula")

Arguments

Remark

The package VineCopula is a continuation of the package CDVine by U. Schepsmeier and E. C. Brechmann (see Brechmann and Schepsmeier (2013)). It includes all functions implemented in CDVine for the bivariate case (BiCop-functions).

Author

Maintainer: Thomas Nagler mail@tnagler.com

Authors:

Other contributors:

  • Carlos Almeida [contributor]

  • Aleksey Min [contributor, thesis advisor]

  • Claudia Czado [contributor, thesis advisor]

  • Mathias Hofmann [contributor]

  • Matthias Killiches [contributor]

  • Harry Joe [contributor]

  • Thibault Vatter [contributor]

Details

Vine copulas are a flexible class of dependence models consisting of bivariate building blocks (see e.g., Aas et al., 2009). This package is primarily made for the statistical analysis of vine copula models. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.

The DESCRIPTION file: tools:::Rd_package_DESCRIPTION("VineCopula")

References

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 (2), 182-198.

Bedford, T. and R. M. Cooke (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial intelligence 32, 245-268.

Bedford, T. and R. M. Cooke (2002). Vines - a new graphical model for dependent random variables. Annals of Statistics 30, 1031-1068.

Brechmann, E. C., C. Czado, and K. Aas (2012). Truncated regular vines in high dimensions with applications to financial data. Canadian Journal of Statistics 40 (1), 68-85.

Brechmann, E. C. and C. Czado (2011). Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50. Statistics & Risk Modeling, 30 (4), 307-342.

Brechmann, E. C. and U. Schepsmeier (2013). Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine. Journal of Statistical Software, 52 (3), 1-27. tools:::Rd_expr_doi("10.18637/jss.v052.i03").

Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229-255.

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

Eschenburg, P. (2013). Properties of extreme-value copulas Diploma thesis, Technische Universitaet Muenchen https://mediatum.ub.tum.de/node?id=1145695

Joe, H. (1996). Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters. In L. Rueschendorf, B. Schweizer, and M. D. Taylor (Eds.), Distributions with fixed marginals and related topics, pp. 120-141. Hayward: Institute of Mathematical Statistics.

Joe, H. (1997). Multivariate Models and Dependence Concepts. London: Chapman and Hall.

Knight, W. R. (1966). A computer method for calculating Kendall's tau with ungrouped data. Journal of the American Statistical Association 61 (314), 436-439.

Kurowicka, D. and R. M. Cooke (2006). Uncertainty Analysis with High Dimensional Dependence Modelling. Chichester: John Wiley.

Kurowicka, D. and H. Joe (Eds.) (2011). Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific Publishing Co.

Nelsen, R. (2006). An introduction to copulas. Springer

Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.

Schepsmeier, U. (2013) A goodness-of-fit test for regular vine copula models. Preprint https://arxiv.org/abs/1306.0818

Schepsmeier, U. (2015) Efficient information based goodness-of-fit tests for vine copula models with fixed margins. Journal of Multivariate Analysis 138, 34-52.

Stoeber, J. and U. Schepsmeier (2013). Estimating standard errors in regular vine copula models. Computational Statistics, 28 (6), 2679-2707
https://link.springer.com/article/10.1007/s00180-013-0423-8#.

White, H. (1982) Maximum likelihood estimation of misspecified models, Econometrica, 50, 1-26.

See Also