The ranges are defined by thresholds t[k](1<=k<=3) in="" the="" following="" way="" range[1]:="" d[i,j]="" <="t[1]" range[k]:="" t[k-1]="" ranges="" can="" be="" changed="" dynamically="" at="" runtime="" by="" changing="" thresholds="" t[k]="" with="" sliders.="" p="">
A estimation of the density function for the distances d[i,j] (for example with kernel density estimation, see function density) is helpful for finding the ideal thresholds t[k] (=local minima in the density function).
=k<=3)>LinkageMap(xSammon, dist, lineTypes=c("solid","dotted", "dashed"),
lineColors=c("red","green","blue"), lineWidths=c(1,1,1),
labels = NULL, cluster = NULL, maxValue=0.5, legendDigits = 2,
xlab = "", ylab = "", main = "")
library(MASS)
data("MilchSmall")
M <- scale(MilchSmall[3:6])
D <- dist(M)
S <- sammon(D)
K <- kmeans(D,center=5)
LinkageMap(S$points, D, cluster=K$cluster, labels=MilchSmall[,2])
Run the code above in your browser using DataLab