standardScreeningBinaryTrait(
datExpr, y,
corFnc = cor, corOptions = list(use = 'p'),
kruskalTest = FALSE, qValues = FALSE,
var.equal=FALSE, na.action="na.exclude",
getAreaUnderROC = TRUE)
list()
(supplying NULL
instead will trigger an error).datExpr
.qValues==TRUE
)
q-value (local false discovery rate) based on the Student T-test p-value (Storey et al 2004).datExpr
across samples in the first group.datExpr
across samples in the second group.datExpr
across samples in the first group. Recall that SE(x)=sqrt(var(x)/n) where n is the number of non-missing values of x.datExpr
across samples in the second group.outx=TRUE
(from Frank Harrel's package Hmisc).
Only present if input getAreUnderROC
is TRUE
.kruskalTest
is TRUE
, the following columns further summarize results of
Kruskal-Wallis test:qValues==TRUE
).m=50
y=sample(c(1,2),m,replace=TRUE)
datExprSignal=simulateModule(scale(y),30)
datExprNoise=simulateModule(rnorm(m),150)
datExpr=data.frame(datExprSignal,datExprNoise)
Result1=standardScreeningBinaryTrait(datExpr,y)
Result1[1:5,]
# use unequal variances and calculate q-values
Result2=standardScreeningBinaryTrait(datExpr,y, var.equal=FALSE,qValue=TRUE)
Result2[1:5,]
# calculate Kruskal Wallis test and q-values
Result3=standardScreeningBinaryTrait(datExpr,y,kruskalTest=TRUE,qValue=TRUE)
Result3[1:5,]
Run the code above in your browser using DataLab