Learn R Programming

WGCNA (version 1.61)

kMEcomparisonScatterplot: Function to plot kME values between two comparable data sets.

Description

Plots the kME values of genes in two groups of expression data for each module in an inputted color vector.

Usage

kMEcomparisonScatterplot(
   datExpr1, datExpr2, colorh, 
   inA = NULL, inB = NULL, MEsA = NULL, MEsB = NULL, 
   nameA = "A", nameB = "B", 
   plotAll = FALSE, noGrey = TRUE, maxPlot = 1000, pch = 19, 
   fileName = if (plotAll) paste("kME_correlations_between_",nameA,"_and_",
                                 nameB,"_all.pdf",sep="") else
                           paste("kME_correlations_between_",nameA,"_and_",
                                 nameB,"_inMod.pdf",sep=""), ...)

Arguments

datExpr1

The first expression matrix (samples=rows, genes=columns). This can either include only the data for group A (in which case dataExpr2 must be entered), or can contain all of the data for groups A and B (in which case inA and inB must be entered).

datExpr2

The second expression matrix, or set to NULL if all data is from same expression matrix. If entered, datExpr2 must contain the same genes as datExpr1 in the same order.

colorh

The common color vector (module labels) corresponding to both sets of expression data.

inA, inB

Vectors of TRUE/FALSE indicating whether a sample is in group A/B, or a vector of numeric indices indicating which samples are in group A/B. If datExpr2 is entered, these inputs are ignored (thus default = NULL). For these and all other A/B inputs, "A" corresponds to datExpr1 and "B" corresponds to datExpr2 if datExpr2 is entered; otherwise "A" corresponds to datExpr1[inA,] while "B" corresponds to datExpr1[inB,].

MEsA, MEsB

Either the module eigengenes or NULL (default) in which case the module eigengenes will be calculated. In inputted, MEs MUST be calculated using "moduleEigengenes(<parameters>)$eigengenes" for function to work properly.

nameA, nameB

The names of these groups (defaults = "A" and "B"). The resulting file name (see below) and x and y axis labels for each scatter plot depend on these names.

plotAll

If TRUE, plot gene-ME correlations for all genes. If FALSE, plot correlations for only genes in the plotted module (default). Note that the output file name will be different depending on this parameter, so both can be run without overwriting results.

noGrey

If TRUE (default), the grey module genes are ignored. This parameter is only used if MEsA and MEsB are calculated.

maxPlot

The maximum number of random genes to include (default=1000). Smaller values lead to smaller and less cluttered plots, usually without significantly affecting the resulting correlations. This parameter is only used if plotAll=TRUE.

pch

See help file for "points". Setting pch=19 (default) produces solid circles.

fileName

Name of the file to hold the plots. Since the output format is pdf, the extension should be .pdf .

...

Other plotting parameters that are allowable inputs to verboseScatterplot.

Value

The default output is a file called "kME_correlations_between_[nameA]_and_[nameB]_[all/inMod].pdf", where [nameA] and [nameB] correspond to the nameA and nameB input parameters, and [all/inMod] depends on whether plotAll=TRUE or FALSE. This output file contains all of the plots as separate pdf images, and will be located in the current working directory.

Examples

Run this code
# NOT RUN {
# Example output file ("kME_correlations_between_A_and_B_inMod.pdf") using simulated data.

set.seed = 100
ME=matrix(0,50,5)
for (i in 1:5) ME[,i]=sample(1:100,50)
simData1 = simulateDatExpr5Modules(MEturquoise=ME[,1],MEblue=ME[,2],
                          MEbrown=ME[,3],MEyellow=ME[,4], MEgreen=ME[,5])
simData2 = simulateDatExpr5Modules(MEturquoise=ME[,1],MEblue=ME[,2],
                          MEbrown=ME[,3],MEyellow=ME[,4], MEgreen=ME[,5])
kMEcomparisonScatterplot(simData1$datExpr,simData2$datExpr,simData1$truemodule)

# }

Run the code above in your browser using DataLab