A network adjacency matrix is a symmetric matrix whose entries lie between 0 and 1. It is a special case of a similarity matrix.
Each variable (column of datExpr
) is regressed on every other variable, with each model fitting index recorded in a square matrix. Note that the model fitting index of regressing variable x and variable y is usually different from that of regressing y on x. From the spline regression model
glm( y ~ ns( x, df)) one can calculate the model fitting index R.squared(y,x).
R.squared(y,x) is a number between 0 and 1. The closer it is to 1, the better the spline regression model
describes the relationship between x and y and the more significant is the pairwise relationship between the
2 variables. One can also reverse the roles of x and y to arrive at a model fitting index R.squared(x,y).
R.squared(x,y) is typically different from R.squared(y,x). Assume a set of n variables x1,...,xn
(corresponding to the columns of datExpr
) then one can define R.squared(xi,xj). The model fitting
indices for the elements of an n x n dimensional matrix (R.squared(ij)).
symmetrizationMethod
implements the following symmetrization methods:
A.min(ij)=min(R.squared(ij),R.squared(ji)),
A.ave(ij)=(R.squared(ij)+R.squared(ji))/2,
A.max(ij)=max(R.squared(ij),R.squared(ji)).
For more information about natural cubic spline regression, please refer to functions "ns" and "glm".