# NOT RUN {
#To calculate the statistical power given sample size and effect size:
wp.crt2arm(f = 0.6, n = 20, J = 10, icc = 0.1, alpha = 0.05, power = NULL)
# Cluster randomized trials with 2 arms
#
# J n f icc power alpha
# 10 20 0.6 0.1 0.5901684 0.05
#
# NOTE: n is the number of subjects per cluster.
# URL: http://psychstat.org/crt2arm
#To generate a power curve given a sequence of sample sizes:
res <- wp.crt2arm(f = 0.6, n = seq(20,100,10), J = 10,
icc = 0.1, alpha = 0.05, power = NULL)
res
# Cluster randomized trials with 2 arms
#
# J n f icc power alpha
# 10 20 0.6 0.1 0.5901684 0.05
# 10 30 0.6 0.1 0.6365313 0.05
# 10 40 0.6 0.1 0.6620030 0.05
# 10 50 0.6 0.1 0.6780525 0.05
# 10 60 0.6 0.1 0.6890755 0.05
# 10 70 0.6 0.1 0.6971076 0.05
# 10 80 0.6 0.1 0.7032181 0.05
# 10 90 0.6 0.1 0.7080217 0.05
# 10 100 0.6 0.1 0.7118967 0.05
#
# NOTE: n is the number of subjects per cluster.
# URL: http://psychstat.org/crt2arm
#To plot the power curve:
plot(res)
#To calculate the required sample size given power and effect size:
wp.crt2arm(f = 0.8, n = NULL, J = 10,
icc = 0.1, alpha = 0.05, power = 0.8)
# Cluster randomized trials with 2 arms
#
# J n f icc power alpha
# 10 16.02558 0.8 0.1 0.8 0.05
#
# NOTE: n is the number of subjects per cluster.
# URL: http://psychstat.org/crt2arm
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab