# NOT RUN {
#To calculate the statistical power given sample size and effect size:
wp.logistic(n = 200, p0 = 0.15, p1 = 0.1, alpha = 0.05,
power = NULL, family = "normal", parameter = c(0,1))
# Power for logistic regression
#
# p0 p1 beta0 beta1 n alpha power
# 0.15 0.1 -1.734601 -0.4626235 200 0.05 0.6299315
#
# URL: http://psychstat.org/logistic
#To generate a power curve given a sequence of sample sizes:
res <- wp.logistic(n = seq(100,500,50), p0 = 0.15, p1 = 0.1, alpha = 0.05,
power = NULL, family = "normal", parameter = c(0,1))
res
# Power for logistic regression
#
# p0 p1 beta0 beta1 n alpha power
# 0.15 0.1 -1.734601 -0.4626235 100 0.05 0.3672683
# 0.15 0.1 -1.734601 -0.4626235 150 0.05 0.5098635
# 0.15 0.1 -1.734601 -0.4626235 200 0.05 0.6299315
# 0.15 0.1 -1.734601 -0.4626235 250 0.05 0.7264597
# 0.15 0.1 -1.734601 -0.4626235 300 0.05 0.8014116
# 0.15 0.1 -1.734601 -0.4626235 350 0.05 0.8580388
# 0.15 0.1 -1.734601 -0.4626235 400 0.05 0.8998785
# 0.15 0.1 -1.734601 -0.4626235 450 0.05 0.9302222
# 0.15 0.1 -1.734601 -0.4626235 500 0.05 0.9518824
#
# URL: http://psychstat.org/logistic
#To plot the power curve:
plot(res)
#To calculate the required sample size given power and effect size:
wp.logistic(n = NULL, p0 = 0.15, p1 = 0.1, alpha = 0.05,
power = 0.8, family = "normal", parameter = c(0,1))
# Power for logistic regression
#
# p0 p1 beta0 beta1 n alpha power
# 0.15 0.1 -1.734601 -0.4626235 298.9207 0.05 0.8
#
# URL: http://psychstat.org/logistic
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab