# NOT RUN {
#To calculate the statistical power given sample size and effect size:
wp.poisson(n = 4406, exp0 = 2.798, exp1 = 0.8938, alpha = 0.05,
power = NULL, family = "Bernoulli", parameter = 0.53)
# Power for Poisson regression
#
# n power alpha exp0 exp1 beta0 beta1 paremeter
# 4406 0.9999789 0.05 2.798 0.8938 1.028905 -0.1122732 0.53
#
# URL: http://psychstat.org/poisson
#To generate a power curve given a sequence of sample sizes:
res <- wp.poisson(n = seq(800, 1500, 100), exp0 = 2.798, exp1 = 0.8938,
alpha = 0.05, power = NULL, family = "Bernoulli", parameter = 0.53)
res
# Power for Poisson regression
#
# n power alpha exp0 exp1 beta0 beta1 paremeter
# 800 0.7324097 0.05 2.798 0.8938 1.028905 -0.1122732 0.53
# 900 0.7813088 0.05 2.798 0.8938 1.028905 -0.1122732 0.53
# 1000 0.8224254 0.05 2.798 0.8938 1.028905 -0.1122732 0.53
# 1100 0.8566618 0.05 2.798 0.8938 1.028905 -0.1122732 0.53
# 1200 0.8849241 0.05 2.798 0.8938 1.028905 -0.1122732 0.53
# 1300 0.9080755 0.05 2.798 0.8938 1.028905 -0.1122732 0.53
# 1400 0.9269092 0.05 2.798 0.8938 1.028905 -0.1122732 0.53
# 1500 0.9421344 0.05 2.798 0.8938 1.028905 -0.1122732 0.53
#
# URL: http://psychstat.org/poisson
#To plot the power curve:
plot(res)
#To calculate the required sample size given power and effect size:
wp.poisson(n = NULL, exp0 = 2.798, exp1 = 0.8938, alpha = 0.05,
power = 0.8, family = "Bernoulli", parameter = 0.53)
# Power for Poisson regression
#
# n power alpha exp0 exp1 beta0 beta1 paremeter
# 943.2628 0.8 0.05 2.798 0.8938 1.028905 -0.1122732 0.53
#
# URL: http://psychstat.org/poisson
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab