Learn R Programming

WeightedCluster (version 1.8-0)

wcKMedRange: Compute wcKMedoids clustering for different number of clusters.

Description

Compute wcKMedoids clustering for different number of clusters.

Usage

wcKMedRange(diss, kvals, weights=NULL, R=1,  samplesize=NULL, ...)

Arguments

diss

A dissimilarity matrix or a dist object (see dist).

kvals

A numeric vector containing the number of cluster to compute.

weights

Numeric. Optional numerical vector containing case weights.

R

Optional number of bootstrap that can be used to build confidence intervals.

samplesize

Size of bootstrap sample. Default to sum of weights.

...

Additionnal parameters passed to wcKMedoids.

Details

Compute a clustrange object using the wcKMedoids method. clustrange objects contains a list of clustering solution with associated statistics and can be used to find the optimal clustering solution.

See as.clustrange for more details.

See Also

See as.clustrange.

Examples

Run this code
data(mvad)
## Aggregating state sequence
aggMvad <- wcAggregateCases(mvad[, 17:86], weights=mvad$weight)

## Creating state sequence object
mvad.seq <- seqdef(mvad[aggMvad$aggIndex, 17:86], weights=aggMvad$aggWeights)

## Compute distance using Hamming distance
diss <- seqdist(mvad.seq, method="HAM")

## Pam clustering
pamRange <- wcKMedRange(diss, 2:15)

## Plot all statistics (standardized)
plot(pamRange, stat="all", norm="zscoremed", lwd=3)

## Plotting sequences in 3 groups
seqdplot(mvad.seq, group=pamRange$clustering$cluster3)

Run the code above in your browser using DataLab