# Plotting results of a unidimensional Rasch Model
## Mock results
uni.proficiency <- rnorm(1000, mean = -0.5, sd = 1)
difficulties <- sort( rnorm( 20))
## Default map
wrightMap( uni.proficiency, difficulties)
## Density version
wrightMap( uni.proficiency, difficulties, person.side = personDens)
# Plotting results of a multidimensional Rasch Model
## Mock results
multi.proficiency <- data.frame(
d1 = rnorm(1000, mean = -0.5, sd = 1),
d2 = rnorm(1000, mean = 0.0, sd = 1),
d3 = rnorm(1000, mean = +0.5, sd = 1))
difficulties <- sort( rnorm( 20))
dev.new(width=10, height=10)
wrightMap( multi.proficiency, difficulties)
# Plotting results of a unidimensional Rating Scale Model
## Mock results
uni.proficiency <- rnorm(1000, mean = -0.5, sd = 1)
items.loc <- sort( rnorm( 20))
thresholds <- data.frame(
l1 = items.loc - 0.5 ,
l2 = items.loc - 0.25,
l3 = items.loc + 0.25,
l4 = items.loc + 0.5)
wrightMap( uni.proficiency, thresholds)
####ConQuest integration###
fpath <- system.file("extdata", package="WrightMap")
#Partial credit model:
model1 <- CQmodel(p.est = file.path(fpath,"ex2.eap"), show = file.path(fpath,"ex2.shw"))
wrightMap(model1)
# Rating scale model:
model2 <- CQmodel(file.path(fpath,"ex2b.eap"), file.path(fpath,"ex2b-2.shw"))
wrightMap(model2, label.items.row = 2)
# Complex model
model3 <- CQmodel(file.path(fpath,"ex4a.mle"), file.path(fpath,"ex4a.shw"))
wrightMap(model3, min.logit.pad = -29, person.side = personDens)
### Skip CQmodel
wrightMap(file.path(fpath,"ex2a.eap"), file.path(fpath,"ex2a.shw"),
label.items.row = 3)
Run the code above in your browser using DataLab