# NOT RUN {
# ML approach:
library(YPBP)
mle <- ypbp(Surv(time, status)~arm, data=ipass, approach="mle")
summary(mle)
ekm <- survival::survfit(Surv(time, status)~arm, data=ipass)
newdata <- data.frame(arm=0:1)
St <- survfit(mle, newdata)
plot(ekm, col=1:2)
with(St, lines(time, surv[[1]]))
with(St, lines(time, surv[[2]], col=2))
# Bayesian approach:
bayes <- ypbp(Surv(time, status) ~ arm, data = ipass,
approach = "bayes", chains = 2, iter = 100)
summary(bayes)
ekm <- survival::survfit(Surv(time, status)~arm, data=ipass)
newdata <- data.frame(arm=0:1)
St <- survfit(bayes, newdata)
plot(ekm, col=1:2)
with(St, lines(time, surv[[1]]))
with(St, lines(time, surv[[2]], col=2))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab