Learn R Programming

aCGH (version 1.50.0)

mergeLevels: mergeLevels

Description

Merging of predicted levels for array CGH data and similar.

Usage

mergeLevels(vecObs,vecPred,pv.thres=0.0001,ansari.sign=0.05,thresMin=0.05,thresMax=0.5,verbose=1,scale=TRUE)

Arguments

vecObs
Vector of observed values, i.e. observed log2-ratios
vecPred
Vector of predicted values, i.e. mean or median of levels predicted by segmentation algorithm
pv.thres
Significance threshold for Wilcoxon test for level merging
ansari.sign
Significance threshold for Ansari-Bradley test
thresMin
merge if segment medians are closer than thresMin , defaiult is 0.05
thresMax
don't merge if segment medians are further than thresMax (unless needs to be merged for a different reason: wilcoxon test), default is .5
verbose
if 1, progress is printed
scale
whether thresholds are on the log2ratio scale and thus need to be converted to the copy number. default is TRUE

Value

vecMerged
Vector with merged values. One merged value returned for each predicted/observed value
mnNow
Merged level medians
sq
Vector of thresholds, the function has searched through to find optimum. Note, these thresholds are based on copy number transformed values
ansari
The p-values for the ansari-bradley tests for each threshold in sq

Details

mergeLevels takes a vector of observed log2-ratios and predicted log2ratios and merges levels that are not significantly distinct.

References

Willenbrock H, Fridlyand J. (2005). A comparison study: applying segmentation to array CGH data for downstream analyses. Bioinformatics. 2005 Sep 14; [Epub ahead of print]

Examples

Run this code
# Example data of observed and predicted log2-ratios
vecObs <- c(rep(0,40),rep(0.6,15),rep(0,10),rep(-0.4,20),rep(0,15))+rnorm(100,sd=0.2)
vecPred <- c(rep(median(vecObs[1:40]),40),rep(median(vecObs[41:55]),15),
  rep(median(vecObs[56:65]),10),rep(median(vecObs[66:85]),20),rep(median(vecObs[86:100]),15))

# Plot observed values (black) and predicted values (red)
plot(vecObs,pch=20)
points(vecPred,col="red",pch=20)

# Run merge function
merge.obj <- mergeLevels(vecObs,vecPred)

# Add merged values to plot
points(merge.obj$vecMerged,col="blue",pch=20)

# Examine optimum threshold
merge.obj$sq

Run the code above in your browser using DataLab