data(colorectal)
## Use mt.maxT function from multtest package to test
## differences in group means for each clone grouped by sex
colnames(phenotype(colorectal))
sex <- phenotype(colorectal)$sex
sex.na <- !is.na(sex)
colorectal.na <- colorectal[ ,sex.na, keep = TRUE ]
dat <- log2.ratios.imputed(colorectal.na)
resT.sex <- mt.maxT(dat, sex[sex.na], test = "t", B = 1000)
## Plot the result along the genome
plotFreqStat(colorectal.na, resT.sex, sex[sex.na],
titles = c("Male", "Female"))
## Adjust the p.values from previous exercise with "fdr"
## method and plot them
resT.sex.fdr <- resT.sex
resT.sex.fdr$adjp <- p.adjust(resT.sex.fdr$rawp, "fdr")
plotFreqStat(colorectal.na, resT.sex.fdr, sex[sex.na],
titles = c("Male", "Female"))
## Derive statistics and p-values for testing the linear association of
## age with the log2 ratios of each clone along the samples
age <- phenotype(colorectal)$age
age.na <- which(!is.na(age))
age <- age[age.na]
colorectal.na <- colorectal[, age.na]
stat.age <- aCGH.test(colorectal.na, age, test = "linear.regression", p.adjust.method = "fdr")
#separate into two groups: < 70 and > 70 and plot freqeuncies of gain and loss
#for each clone. Note that statistic plotted corresponds to linear coefficient
#for age variable
plotFreqStat(colorectal.na, stat.age, ifelse(age < 70, 0, 1), titles =
c("Young", "Old"), X = FALSE, Y = FALSE)
Run the code above in your browser using DataLab