This function is similar to the ESTIMATE statement in ARIMA procedure of SAS,
except that it does not fit a transfer function model for a univariate time series. The
fitting method is inherited from arima
in stats
package. To be
specific, the pure ARIMA(p,q) is defined as
$$X[t] = \mu + \phi[1]*X[t-1] + ... + \phi[p]*X[p] +
e[t] - \theta[1]*e[t-1] - ... - \theta[q]*e[t-q].$$
The p
and q
can be a vector for fitting a sparse ARIMA model. For example,
p = c(1,3),q = c(1,3)
means the ARMA((1,3),(1,3)) model defined as
$$X[t] = \mu + \phi[1]*X[t-1] + \phi[3]*X[t-3] + e[t]
- \theta[1]*e[t-1] - \theta[3]*e[t-3].$$ The PDQ
controls the
order of seasonal ARIMA model, i.e., ARIMA(p,d,q)x(P,D,Q)(S), where S is the seasonal
period. Note that the difference operators d
and D = PDQ
[2] are different.
The d
is equivalent to diff(x,differences = d)
and D is
diff(x,lag = D,differences = S)
, where the default seasonal period is
S = frequency(x)
.
The residual diagnostics plots will be drawn.