Internal wrapper to INLA and are called from fitAbn.bayes
and buildScoreCache.bayes
.
calc.node.inla.glmm(
child.loc = NULL,
dag.m.loc = NULL,
data.df.loc = NULL,
data.dists.loc = NULL,
ntrials.loc = NULL,
exposure.loc = NULL,
compute.fixed.loc = NULL,
mean.intercept.loc = NULL,
prec.intercept.loc = NULL,
mean.loc = NULL,
prec.loc = NULL,
loggam.shape.loc = NULL,
loggam.inv.scale.loc = NULL,
verbose.loc = FALSE,
nthreads = NULL
)
If INLA failed, FALSE or an error is returned. Otherwise, the direct output from INLA is returned.
index of current child node.
dag as matrix.
data df,
list of distributions.
rep(1,dim(data.df)[1])
.
rep(1,dim(data.df)[1])
.
TRUE.
the prior mean for all the Gaussian additive terms for each node. INLA argument control.fixed=list(mean.intercept=...)
and control.fixed=list(mean=...)
.
the prior precision for all the Gaussian additive term for each node. INLA argument control.fixed=list(prec.intercept=...)
and control.fixed=list(prec=...)
.
the prior mean for all the Gaussian additive terms for each node. INLA argument control.fixed=list(mean.intercept=...)
and control.fixed=list(mean=...)
. Same as mean.intercept.loc
.
the prior precision for all the Gaussian additive term for each node. INLA argument control.fixed=list(prec.intercept=...)
and control.fixed=list(prec=...)
. Same as prec.intercept.loc
.
the shape parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale))))
.
the inverse scale parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument control.family=list(hyper = list(prec = list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale))))
.
FALSE to not print additional output.
number of threads to use for INLA. Default is fit.control[["ncores"]]
or build.control[["ncores"]]
which is the number of cores specified in control
and defaults to 1.
Other Bayes:
buildScoreCache()
,
calc.node.inla.glm()
,
fitAbn()
,
getmarginals()